
Leaving an Unknown Maze with One-Way Roads

Bernd Brüggemann∗ Tom Kamphans∗ Elmar Langetepe∗

Abstract

We consider the problem of escaping from an unknown
polygonal maze under limited resources. The maze
may have passages that can be traversed in only one
direction. It is well-known that in a setting without
’one-way roads’, the Pledge algorithm always finds a
path out of an unknown maze provided that such a
path exists. We extend the Pledge algorithm for our
type of environments and show the correctness of our
solutions.

Apart from the maze-leaving application, we intro-
duce a new type of scenes that combines the advan-
tages of both polygonal scenes (i.e., modelling the geo-
metric shape of the environment) and directed graphs
(i.e., modelling the connectivity of several parts in the
environment). This type might be interesting to con-
sider in other motion-planning tasks such as explo-
ration and search.

Keywords: Online algorithms, motion planning, au-
tonomous robots, Pledge algorithm, one-way roads.

1 Introduction

Imagine you want to leave the old town of a large city.
The city is surrounded by some ring roads. As soon
as you reach this ring, there are traffic signs that lead
you to your destination, but you have no clue how to
get to the ring roads. To make things worse, there are
many one-way roads in the old town [8].

Usually, we model environments like this by polygo-

nal scenes; see, for example, [12, 14, 3]. If we have lim-
ited ressources and, particularly, cannot build a map
of the environment, the task of leaving an unknown
maze can be solved using the well-known Pledge al-
gorithm, see Algorithm 1.1 The Pledge algorithm as-
sumes that the searcher is able to recognize and follow
a wall in a specified direction while counting the turn-

ing angles (w.l.o.g. we assume that the searcher uses
the left-hand rule; that is, the searcher keeps the ob-
stacle boundary on its left side). We assume that the
searcher has no vision and knows, when it leaved the
maze.

It was shown by Abelson and diSessa [1] and Hem-
merling [7] that a searcher will escape from a polyg-

∗University of Bonn, Institute of Computer Science I, 53117
Bonn, Germany.

1See also [1, 7, 10]. For an implementation of the Pledge
algorithm see [6].

Algorithm 1: Pledge [1]

ϕ := 0.
REPEAT

REPEAT

Move in direction ϕ in the free space.
UNTIL Searcher hits an obstacle.
REPEAT

Follow the wall using the left-hand rule.
Count the overall turning angle in ϕ.

UNTIL Angle counter ϕ is equal to 0.
UNTIL Searcher is outside the maze.

onal maze using the Pledge algorithm, provided that
there is such a solution, and provided that the agent is
error free. For sufficient conditions on the searcher’s
errors to ensure a successful application of the Pledge
algorithm see [9, 8].

P1

e

s

Figure 1: Applying the Pledge algorithm to environ-
ments with one-way roads does not work.

We consider the case that there are one-way roads
in the surrounding. We can model this problem by
adding directed edges between obstacle boundaries.
The searcher is allowed to cross these edges only from
the left to the right—seen in the direction of the
edge—but never the opposite way. It is easy to see
that we cannot simply apply the Pledge algorithm
considering one-way roads as obstacle edges if we en-
counter them from the wrong side and otherwise pass
them. Figure 1 shows an example with one one-way
road e. A searcher starting in s hits the obstacle P1,
passes e, and leaves P1. Following the second obstacle,
the searcher meets the exit side of e. Thus, it follows
e and circles P1 again. The angle counter gets zero
in the same vertex of P1 as in the first visit and the
searcher is trapped in an endless loop. Therefore, the

1

simple consideration of one-way roads does not work
and we have to use a more sophisticated strategy.

2 Preliminaries

We are given a scene, M = (P , E), where P is a set of
simple polygons and E is a set of directed edges, whose
start- and endpoints lie on the boundary of a polygon.
We call the left side of an edge e ∈ E the entrance

of the one-way road marked by e, the right side the
exit. The searcher is allowed to pass e only from the
entrance side; passing e from the exit side is forbidden.
We assume that the searcher perceives exits as walls.
Nevertheless, we assume that the searcher does not
have sufficient memory to store a map of the whole
scene. We allow space only in |E|, not in |P|.

We consider two different models: First, the
searcher is not able to distinguish entrances; that is,
when meeting an entrance, the searcher is not able to
determine whether this entrance is met for the first
time or has been met before. In the second setting
we assume that the search is able to distinguish en-
trances. Either every entrance has a unique identifier
that the searcher can read or the searcher is able to
mark a discovered entrance.

s

A B

Figure 2: An unfair maze: The searcher cannot tell
whether A or B leads to the exit, and it is trapped if
it chooses to pass B.

Further, we assume that for every point in the free

space, Cfree := R
2\

⋃

P∈P

◦

P , there exists a path to
an exit; we call such an environment a fair maze. In
an unfair maze, the searcher may get stuck. See, for
example, Figure 2: Starting in s, the searcher cannot
determine whether the exit is behind one-way road A

or B. Once the searcher passed the wrong road, B, it
is trapped!

Definition 1 Given a scene, M = (P , E), we can

consider every edge in E as a wall. Now, the free

space, Cfree, divides into several path-connected com-

ponents.2 We call these components the regions of

M.

2A set S ⊆ R
2 is path connected, if for every a, b ∈ S there

is a path from a to b that is completely inside S.

3 Leaving a Maze with One-Way Roads

The difference between usual polygonal scenes and
our type of environments is that we have edges that
mark the entrance to a one-way road. Now, when the
searcher reaches an entrance, it has the choice to en-
ter the one-way road or to consider the entrance edge
as a wall and follow the edge.

It is easy to see that any strategy with periodic
choices (e.g., ’enter every second one-way road’ or ’en-
ter a one-way road every second time that its entrance
is met’) fails: For such a strategy, we can construct
a maze where the given periodic choice ends up in an
endless loop. However, any fair maze is solvable:

Lemma 1 For every fair maze, M = (P , E), there is

a function β : { 1, . . . , |E| } −→ { enter, bypass} such

that a searcher using the Pledge algorithm can leave

M if it enters a one-way road, ei, iff β(i) = enter.

Proof. We start with β(i) = bypass ∀i. In ev-
ery maze there exists a region, R1, from which the
searcher using the Pledge algorithm can escape with-
out crossing a one-way road. Remark that R1 is the
only unbounded region in M. Now, we remove every
obstacle and one-way road in R1 and proceed recur-
sively until we removed every obstacle. For a given
start point, there is a sequence Rk, . . . , R1 of regions
that the searcher has to pass to move from s to R1.
Now, we define β(i) := enter for every ei that leads
from a region Rj to Rj−1, 1 < j ≤ k. �

3.1 Indistinguishable One-Way Roads

In this section, we assume that the searcher is not able
to distinguish one-way roads. That is, if the searcher
meets an entrance it cannot tell whether this is a new
entrance or one that has been met before. Algorithm 2
solves the problem in this setting: We store a control
word w ∈ { ′r′, ′p′, ′b′ }∗ (see Algorithm 2) where ev-
ery character determines the searcher’s behavior when
meeting an entrance. We evaluate this word charac-
ter by character and generate the next word in lex-
icographical order (basically, we add 1 in Z

/

3Z) when
every character is evaluated. Between two entrances,
the searcher moves using the Pledge algorithm.

Theorem 2 Algorithm 2 finds the exit from every

fair maze.

Proof. We use a proof idea similar to [7]. First, we
show that there is a universal control word, wuni, that
allows the searcher to escape from every start point.
Let the searcher start in s1 and let ei be the first one-
way road that the searcher meets. By Lemma 1, there
is a control word wi that directs the searcher to the
exit. Now, let the searcher start in s2 and met an-
other one-way road ej 6= ei. If the searcher applys wi

2

Algorithm 2: Pledge with indistinguishable one-way
roads

• w := ′′p′′, i := 1.

• Use the Pledge algorithm, until a one-way
entrance is met. If the ith character in w is
’p’: enter the one-way road
’b’: do not enter
’r’: angle counter ϕ := ϕ mod 2π

Increment i.
If i > |w| generate the next word and i := 1.
Continue the Pledge algorithm.

starting in ej , it either escapes or ends up on another
one-way road ek. Now, there is a word wk that leads
to the exit, and the concatenation w1 := wk ◦ ′r′ ◦ wi

finds the exit from two one-way roads. Note that it
is necessary to ’reset’ the angle counter between two
control words to ensure that wk leads to the exit for
every angle-counter value that the searcher may have
when it meets ek, because two different angle-counter
values may cause different paths even for the same
control word.

This way we continue, until our control word, wuni,
finds the exit from every one-way road. Algorithm 2
enumerates all words in { ′r′, ′p′, ′b′ }∗ and, thus, even-
tually finds wuni. �

Needless to mention that Algorithm 2 may try a lot
of words until it finds the exit and uses O(|E|2) space,
so this algorithm is more of theoretical value.

3.2 Distinguishable One-Way Roads

Now, we assume that the searcher is able to uniquely
identify entrances to one-way roads. Clearly, this
model is more powerful than the one used in the
preceding section: We have the advantage of using
the entrances of one-way roads as landmarks. Thus,
we can uniquely identify regions by the entrances on
their outer boundary. Our algorithm builds a graph
of the environment with one node per region and
directed edges representing the one-way roads lead-
ing from one region to another. We traverse this
graph using an online strategy for the exploration of
directed graphs, see Papadimitriou [13], Albers and
Henzinger [2], Kwek [11], or Fleischer and Trippen [5].
The graph exploration strategy is the framework for
our maze leaving strategy. Algorithm 3 is a subroutine
that is called by the graph explorer when the search
begins and every time the searcher has just passed a
one-way road that has never been passed before.

Algorithm 3, in turn, uses basically the Pledge al-
gorithm to explore a region. If the searcher arrives
at an entrance, the Pledge algorithm is interrupted

to gather some information about the region. Algo-
rithm 3 uses a marker for every one-way roads either
to store a pair (from, to) of regions or to mark the one-
way road as ’unknown so far’, ’open forever’, or ’closed
forever’. The latter is used for one-way roads that are
part of the inner boundary of a region that is already
visited (i.e., lead to regions that are completely sur-
rounded by this region), see Figure 3(i). The exit of
the maze cannot be inside such a region, so we never
have to visit it. We use ’open forever’ for one-way
roads that do not define a region, see Figure 1. For
every other one-way road, the decision whether or not
to enter it is based on the online exploration strategy
for directed graphs.

e

e

(i) (ii)

Figure 3: (i) The searcher surrounded a set of inner
obstacles, (ii) the searcher moved on the outer bound-
ary of a region.

Theorem 3 A graph explorer that calls Algorithm 3

from start point s and after a one-way road is entered

for the first time, finds the exit from every fair maze.

Proof. The Pledge algorithm ensures that we eventu-
ally reach the outer boundary of a region that we enter
either from the start point or after passing a one-way
road: Inside a region we interrupt the Pledge algo-
rithm only when we meet an entrance on the inner
boundary. After surrounding this part of the inner
boundary, we consider this boundary as one obsta-
cle by ’closing’ every one-way road that leads inside.
Then, we continue the Pledge algorithm with the same
angle-counter value as before the interruption. From
the correctness of the Pledge algorithm follows that it
reaches the bounding box of a maze in a setting with-
out one-way roads; thus, in our setting the Pledge
algorithm reaches the outer boundary of a region.

When we reach the first one-way road on the outer
boundary of a region, we interrupt the Pledge algo-
rithm again. We completely circle the outer boundary
discovering every one-way road that leaves the current
region. So we build by and by a graph that contains
a node for every region that we enter and an edge
for every one-way road between regions. The online
graph exploration strategy ensures that this graph is
completely traversed until we find the exit. �

3

Algorithm 3: Pledge with distinguishable one-way
roads

• Use the Pledge algorithm, until an entrance to a
one-way road e is met.

• If e is ’open forever’ or ’closed forever’ continue
the Pledge algorithm.

• If the ’from’-marker of e is set, update the ’to’-
marker of the most recently passed one-way road.
(The searcher is inside a known region). If both
markers are the same, set the one-way road to
’open forever’ and remove it from the graph.
Continue the graph explorer.

• If e was never met before, store the current angle-
counter value, ωe, and follow the wall using the
left-hand rule until e is met again. On this path,
store all discovered entrances in a list, `, and
count the turning angles. Compare the current
angle-counter value to ωe:

– If the difference is 2π, the searcher has sur-
rounded an inner obstacle (or a set of inner
obstacles), see Figure 3(i). Mark every one-
way road in ` as ’closed forever’. Set the
angle-counter to ωe and continue the Pledge
algorithm.

– If the difference is −2π, the searcher moved
on the outer boundary of a region, see
Figure 3(ii). If no entrance on the outer
boundary has been met before, we have
found a new region: Add a new vertex to
the graph. Set the ’from’ markers of the
one-way roads in ` and the ’to’-marker of
the most recently passed one-way road to
this region. Continue the graph explorer.

Both the graph explorer and Algorithm 3 use
O(|E|) space. The simple strategy by Kwek [11] uses
O(min{ r|E|, dr2+|E| }) edge traversals, where r is the
number of vertices (regions) and d is the number of
edges that have to be added to make the graph Eule-
rian. The more elaborated strategy by Fleischer and
Trippen [5] uses O(d8 |E|) edge traversals. Altogether,
the strategy presented in this section is more applica-
ble than the one shown in the preceding section. But
it assumes, that the searcher is able to distinguish
one-way roads.

4 Conclusion

We introduced polygonal scenes with passages that
can be traversed in only one direction, and considered
the problem of leaving such a scene. This problem was

solved for two different settings—indistinguishable
and distinguishable one-way entrances—by combining
the Pledge algorithm with other techniques that make
the decision whether or not to enter a one-way road:
enumerating all control words and exploring directed
graphs online. Two other approaches are presented in
[4] and in the forthcoming technical report. A strat-
egy that leaves an unknown maze with one-way roads
was implemented on a Khepera II robot [4].

The next step may be to ask, if and how other algo-
rithms known for polygonal scenes such as searching,
navigation, exploration/covering have to be modified
in the presence of one-way roads.

References

[1] H. Abelson and A. A. diSessa. Turtle Geometry. MIT
Press, Cambridge, 1980.

[2] S. Albers and M. Henzinger. Exploring unknown envi-
ronments. In Proc. 12th Annu. ACM Sympos. Theory

Comput., pages 416–425, 1997.

[3] A. Blum, P. Raghavan, and B. Schieber. Navigating in un-
familiar geometric terrain. SIAM J. Comput., 26(1):110–
137, Feb. 1997.

[4] B. Brüggemann. Entkommen aus unbekannten
Labyrinthen mit Einbahnstraßen. Diplomarbeit, Univer-
sity of Bonn, November 2006.

[5] R. Fleischer and G. Trippen. Exploring an unknown graph
efficiently. In Proc. 13th Annu. European Sympos. Algo-

rithms, volume 3669 of Lecture Notes Comput. Sci., pages
11–22. Springer-Verlag, 2005.

[6] U. Handel, T. Kamphans, E. Langetepe, and
W. Meiswinkel. Polyrobot — an environ-
ment for simulating strategies for robot naviga-
tion in polygonal scenes. Java Applet, 2002.
http://www.geometrylab.de/Polyrobot/.

[7] A. Hemmerling. Labyrinth Problems: Labyrinth-Searching

Abilities of Automata. B. G. Teubner, Leipzig, 1989.

[8] T. Kamphans. Models and Algorithms for Online Explo-

ration and Search. Dissertation, University of Bonn, 2005.
http://www.kamphans.de/k-maole-05.pdf.

[9] T. Kamphans and E. Langetepe. The Pledge algorithm
reconsidered under errors in sensors and motion. In Proc.

of the 1th Workshop on Approximation and Online Algo-

rithms, volume 2909 of Lecture Notes Comput. Sci., pages
165–178. Springer, 2003.

[10] R. Klein. Algorithmische Geometrie - Grundlagen, Meth-

oden, Anwendungen. Springer, Heidelberg, 2nd edition,
2005.

[11] S. Kwek. On a simple depth-first search stratey for explor-
ing unknown graphs. In Proc. 5th Workshop Algorithms

Data Struct., pages 345–353, 1997.

[12] V. J. Lumelsky and A. A. Stepanov. Path-planning strate-
gies for a point mobile automaton moving amidst unknown
obstacles of arbitrary shape. Algorithmica, 2:403–430,
1987.

[13] C. H. Papadimitriou. On the complexity of edge travers-
ing. J. ACM, 23:544–554, 1976.

[14] C. H. Papadimitriou and M. Yannakakis. Shortest paths
without a map. Theoret. Comput. Sci., 84(1):127–150,
1991.

4

