
Computing the Detour of Polygons

Ansgar Grüne Rolf Klein Elmar Langetepe

Institut für Informatik I, Universität Bonn

Abstract

Let P be a simple polygon in
�

2 with n vertices. The detour of P between two points,
p, q ∈ P , is the length of a shortest path contained in P and connecting p to q, divided by the
distance of these points. The detour of the whole polygon is the maximum detour between
any two points in P . We first analyze properties of pairs of points with maximum detour.
Next, we use these properties to achieve a deterministic O(n2)-algorithm for computing the
maximum Euclidean detour and a deterministic O(n log n)-algorithm which calculates a (1+ε)-
approximation. Finally, we consider the special case of monotone rectilinear polygons. Their
L1-detour can be computed in time O(n).

1 Introduction

Let P be a connected set in � d. For any two points p, q ∈ P let dP (p, q) denote the infimum of
the lengths of all curves which are contained in P and connect p to q. The length of the curves is
measured using a given norm ‖.‖. The detour δP (p, q) between p and q in P with respect to ‖.‖
and the detour δ(P) of P are defined as

δP (p, q) :=
dP (p, q)

‖q − p‖
, δ(P) := sup

p,q∈P,p6=q

δP (p, q).

Narasimhan and Smid [8] examined the problem of computing a value similar to δ(G) for a
given Euclidean graph G. They restricted the maximum to pairs of vertices. Thus, their problem
is slightly different (but not necessarily easier). The maximum of all points was first considered by
Ebbers-Baumann et al. [3]. They presented an O(n log n) approximation algorithm for n-link chains
in � 2. Later, Agarwal et al. [1] gave a randomized O(n log3 n) and a deterministic O(n log4 n) exact
algorithm. Simultaneously, Langerman, Morin and Soss [6] constructed an O(n log n) randomized
algorithm for solving the same problem.

In this abstract we present algorithms computing the detour of a simple polygon P ⊂ � 2 where
P denotes the union of the interior and the boundary. We first analyze some general properties of
detour maxima, then we develop an algorithm for the Euclidean metric, and finally, we present a
faster algorithm for the L1-detour of monotone rectilinear polygons.

2 Properties of Maxima

Ebbers-Baumann et al. [3] showed for the Euclidean norm that every polygonal chain C in � 2

has a co-visible1 detour maximum (p, q), i.e. δC(p, q) = δ(C). The proof can easily be extended to
polygons with detour δ(P) > 1 and arbitrary norms.2

Lemma 1 Let P ⊂ � 2 be a simple polygon with δ(P) > 1 where the detour is measured with
respect to an arbitrary norm ‖.‖. Then, there always exists a detour maximum (p, q) ∈ P × P

which is co-visible in PC 3.

1In this setting, (p, q) is co-visible iff pq ∩ C = {p, q}.
2Note that for Euclidean distances δ(P) = 1 iff P is convex.
3PC = � 2 \ P ; (p, q) is co-visible in PC iff pq ∩ P = {p, q}.

61

p = p0 p1 p2 p3 p4 p5 p6 q = p7

dP (p, q)P

Figure 1: Boundary intersection points of pq

Proof. Let (p, q) be a detour maximum. Due to δ(p, q) = δ(P) > 1, (p, q) cannot be co-visible in P .
If (p, q) is co-visible in PC, the proof is done. Otherwise, let p0 := p, pn := q and let p1, . . . , pn−1

be the boundary intersection points of pq apart from p, q (see Fig. 1), i.e. pi ∈ pq ∩ ∂P \ {p, q} and
pi touches pq ∩ PC.

If the points pi are ordered by their distance to p, we get ‖q − p‖ =
∑n−1

i=0 ‖pi+1 − pi‖. Addi-
tionally applying the triangle inequality of dP (., .) yields:

δP (p, q) =
dP (p, q)

‖q − p‖

∆-inequ.

≤

∑n−1

i=0 dP (pi, pi+1)
∑n−1

i=0 ‖pi+1 − pi‖
(1)

≤ max
0≤i≤n−1

dP (pi, pi+1)

‖pi+1 − pi‖
= max

0≤i≤n−1
δP (pi, pi+1)

The maximum on the right hand side is attained by a pair of points being co-visible in P C. �

For the Euclidean norm one can even show that every detour maximum of any non-convex
polygon must be co-visible in PC. For the L1-norm we will give a stricter statement in section 4.

3 Euclidean Detour of Simple Polygons

In this section, we introduce an algorithm which computes the exact Euclidean detour of a given
polygon P with n vertices. Lemma 1 already allows us to restrict the search for detour maxima to
the boundary of P . The following lemma further reduces the number of candidates.

Lemma 2 Any simple polygon P ⊂ � 2 has a detour maximum (p, q) which is a vertex-boundary
cut, i.e. at least one of the points p, q is a vertex and the other one lies on the boundary ∂P .

Lemma 2 suggests the following strategy: For every vertex p of P and every edge e of the
boundary compute the local maximum maxq∈e δP (p, q) and return the maximum of these values.
However, this does not lead directly to a quadratic upper time bound because the local maximum
cannot be found in constant time.

a

b

c

Fp,e

e

p

P

Figure 2: Shortest path tree SPT(p), funnel Fp,e and its regions

To find a local maximum we consider the funnel Fp,e of p and e (see Fig. 2) first examined by
Lee and Preparata [7]. Let a and b be the vertices incident to e, then Fp,e is the polygon bounded

62

by e and the shortest paths π(a, c) and π(b, c), where c is the first common vertex of π(a, p) and
π(b, p). This vertex c is called the cusp of the funnel, and both paths π(a, c) and π(a, b) are outward
convex (see [5]).

For every point q ∈ e the shortest path π(q, p) can be divided into π(q, c) and π(c, p), the first
one completely contained within Fp,e. We associate with q the first vertex of Fp,e hit by π(q, p).
Thus, if k is the number of vertices of Fp,e, the edge e will be divided into k regions R1, . . . , Rk

including the degenerate cases R1 := {a} and Rk := {b} (see Fig. 2). For each such region a local
maximum can be computed in O(1) if Fp,e and |π(p, c)| are known.

Hence, a local maximum of any point p and any edge e can be computed in O(k) where k is the
number of vertices (or edges) of Fp,e. The funnel Fp,e can easily be computed from the shortest path
tree SPT(p) in O(k) time by looking for the first common vertex of π(a, p) and π(b, p). Because
every edge of the shortest path tree SPT(p) (see Fig. 2) can be at most on the boundary of two
funnels and SPT(p) has n − 1 edges, we get the value maxq∈∂P δP (p, q) in time O(n) if SPT(p) is
known.

Guibas et al. [5] have shown how to construct SPT(p) in linear time in any triangulated simple
polygon. Since we can use Chazelle’s [2] well-known algorithm to triangulate P in linear time, our
idea leads to an algorithm computing maxq∈∂P δP (p, q) in O(n). Thus, applying Lemma 2 yields
a way to get the detour of P in O(n2).

Theorem 3 Let P ⊂ � 2 be a simple polygon with n vertices. Its maximum Euclidean detour
value δ(P) and a pair of points (p, q) attaining the maximum can be computed in time O(n2).

However, this result might not be best possible. One can transfer the approximation algorithm
of Ebbers-Baumann et al. [3] to the setting of simple polygons achieving a (1 + ε)-approximation
in O(n log n). This hints that there could be a sub-quadratic solution. The complete proofs of the
previous results can be found in [4].

4 L
1-Detour of Monotone Rectilinear Polygons

Within the simpler setting of monotone rectilinear4 polygons, we can compute the L1-detour in
linear time. The main reason is a stricter statement about detour maxima proven similarly to
Lemma 1:

Lemma 4 Let P ⊂ � 2 be a simple rectilinear polygon and let (p, q) ∈ P × P be a L1-detour
maximum. If R(p, q) denotes the bounding rectangle5 of p and q, its intersection with P must be
empty apart from the vertices of R(p, q), i.e. (R(p, q) \ {p, q, (px, qy), (qx, py)}) ∩ P = ∅.

It follows immediately that any L1-detour maximum (p, q) must either be a pair of vertices
or an axis-parallel pair of boundary points. In both cases, (p, q) must be co-visible in P C. If P

is x-monotone6 (y-monotone), further arguments yield that every maximum must be a horizontal
(vertical) vertex-boundary cut.

W.l.o.g. let P be x-monotone. We describe an algorithm examining all upper maximum
candidates, i.e. horizontal vertex-boundary cuts of the upper boundary which are co-visible in P C.
The lower boundary can be treated in the same way.

The algorithm starts at the left-most vertex of the upper boundary and proceeds to the right
(see Fig. 3). While moving on the boundary chain, a stack holds every previously visited left
vertical segment s (i.e. s is vertical and P lies to the left of s) for which there has not been found
any opposite right segment, yet. When the current boundary point is moving upward a vertical
(right) edge, the algorithm pops the corresponding left segments and examines a horizontal pair
each time it pops a vertex of a left segment or finds a vertex on the current right segment.

4A polygon is rectilinear iff every edge is either horizontal or vertical.
5R(p, q) := {r ∈ � 2|min(px, qx) ≤ rx ≤ max(px, qx) ∧ min(py, qy) ≤ ry ≤ max(py, qy)}.
6P is x-monotone iff its intersection with any vertical line is connected.

63

found candidates

point

segments on stack

current boundary

Figure 3: Some states of the algorithm for monotone rectilinear polygons

When the algorithm has found a maximum candidate (p, q), it has to calculate its detour.
Let π(p, q) be a rectilinear shortest path connecting p and q within P . The y-length ly(π(p, q))
is the summed up length of all vertical segments of π(p, q). The x-length lx(π(p, q)) is defined

analogously. Obviously, dL1

P (p, q) = lx(π(p, q)) + ly(π(p, q)) where lx(π(p, q)) = |px − qx| due to P

being x-monotone. Thus, for computing δL1

P (p, q) we just need the coordinates of p and q and the
value ly(π(p, q)). The additional path information for calculating ly(π(p, q)) can also be stored on
the stack without increasing the linear time bound of the algorithm. Further details are omitted
in this abstract.

Theorem 5 Let P ⊂ � 2 be an x-monotone (or y-monotone) rectilinear polygon with n vertices.

An L1-detour maximum (p, q) and its value δL1

P (p, q) = δL1

(P) can be computed in time O(n).

5 Open Questions

One main questions remains open: Is there a sub-quadratic algorithm computing exactly the
Euclidean detour of any simple polygon or is there a quadratic lower bound? The same problem
is not solved for the presumably easier setting of simple rectilinear polygons and the L1-norm.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, and M. Sharir. Computing the detour of polygonal curves.
Technical report, Freie Universität Berlin, Fachbereich Mathematik und Informatik, 2002.

[2] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485–
524, 1991.

[3] A. Ebbers-Baumann, R. Klein, E. Langetepe, and A. Lingas. A fast algorithm for approximating
the detour of a polygonal chain. ESA 2001 - European Symposium on Algorithms, 2001.

[4] A. Gruene. Umwege in Polygonen. Diplomarbeit, Universität Bonn, 2002.

[5] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209–233, 1987.

[6] S. Langerman, P. Morin, and M. A. Soss. Computing the maximum detour and spanning ratio
of planar paths, trees and cycles. STACS 2002, pages 250–261, 2002.

[7] D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence of rectilinear barriers.
Networks, 14:393–410, 1984.

[8] G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM J.
Comput., 30:978–989, 2000.

64

