
Competitive Online Approximation of the Optimal Search Ratio∗

Rudolf Fleischer† Tom Kamphans‡ Rolf Klein‡ Elmar Langetepe‡

Gerhard Trippen§

Abstract

How efficiently can we search an unknown environment for a goal in unknown position?
How much would it help if the environment were known? We answer these questions for
simple polygons and for undirected graphs, by providing online search strategies that are as
good as the best offline search algorithms, up to a constant factor. For other settings we
prove that no such online algorithms exist.

Keywords: Online motion planning, competitive ratio, searching, exploration.

1 Introduction

One of the recurring tasks in life is to search one’s environment for an object whose location
is—at least temporarily—unknown. This problem comes in different variations. The searcher
may have vision, or be limited to sensing by touch. The environment may be a simple polygon,
for example, an apartment, or a graph, like a street network. Finally, the environment may be
known to the searcher, or be unknown.

Such search problems have attracted a lot of interest in online motion planning, see for
example the survey by Berman [5]. Usually the cost of a search is measured by the length of the
search path traversed; this, in turn, is compared against the length of the shortest path from the
start position to the point where the goal is reached. The maximum quotient of these values,
taken over all environments and all goal positions within an environment, is the competitive ratio
of the search algorithm.

Most prominent is the problem of searching two half-lines emanating from a common start
point. The “doubling” strategy visits the half-lines alternatingly, each time doubling the depth
of exploration. This way, the goal point is reached after traversing a path at most 9 times as
long as its distance from the start, and the competitive ratio of 9 is optimal for this problem;
see Baeza-Yates et al. [4] and Alpern and Gal [2]. This doubling approach frequently appears
as a subroutine in more complex navigation strategies.

In searching m > 2 half-lines, a constant ratio with respect to the distance from the start
can no longer be achieved. Indeed: Even if the half lines were replaced by segments of the same
finite length, the goal could be placed at the end of the segment visited last, causing the ratio to

∗A preliminary version of this paper appeared at ESA 2004 [13].
†Fudan University, Shanghai Key Laboratory of Intelligent Information Processing, Department of Computer

Science and Engineering, Shanghai, China. The work described in this paper was partially supported by a grant
from the National Natural Science Fund China (grant no. 60573025).

‡University of Bonn, Institute of Computer Science I, D-53117 Bonn, Germany.
§The Hong Kong University of Science and Technology, Hong Kong, Department of Computer Science.

The work described in this paper was partially supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project No. HKUST6010/01E) and by a grant from the
Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the
German Academic Exchange Service (Project No. G-HK024/02).

1

be at least 2m − 1. Exponentially increasing the exploration depth by m/m − 1 is known [4, 2]
to lead to an optimal competitive ratio of

C(m) = 1 + 2m

(

m

m − 1

)m−1

≤ 1 + 2me.

Much less is known about more realistic settings. Suppose a searcher with vision wants
to search an unknown simple polygon for a goal in unknown position. He could employ the
m-way technique from above: By exploring the shortest paths from the start to the m reflex
vertices of the polygon—ignoring their tree structure—a competitive ratio of C(m) can easily
be achieved [20]. Schuierer [24] has refined this method and obtained a ratio of C(2k), where k
denotes the smallest number of convex and concave chains into which the polygon’s boundary
can be decomposed.

But these results do not completely settle the problem. For one, it is not clear why the
numbers m or k should measure the difficulty of searching a polygon. Also, human searchers
can often outperform m-way search, because they make educated guesses about the shape of
those parts of the polygon not yet visited.

In this paper we take the following approach: Let π be a search path for a fixed polygon P ,
i.e., a path from the start point, s, through P from which each point p inside P will eventually
be visible. Let pπ be the first point on π where this happens for a point p. The cost of getting
to p via π is equal to the length of π from s to pπ, plus the Euclidean distance from pπ to p.
We divide this value by the length of the shortest s−to−p path in P . The supremum of these
ratios, over all p ∈ P , is the search ratio of π. The lowest search ratio possible, over all search
paths, is the optimum search ratio of P ; it measures the “searchability” of P .

Apparently, this definition was first given by Koutsoupias et al. [21]. They studied graphs
with unit length edges where the goal can be located only at vertices, and they studied only
the offline case where the graph is completely known a priori. They showed that computing
the optimal search ratio offline is an NP-complete problem, and gave a polynomial time 8-
approximation algorithm based on the doubling heuristic.

The crucial question we are considering in this paper is the following: Is it possible to design
an online search strategy whose search ratio stays within a constant factor of the optimum
search ratio, for arbitrary instances of the environment? Surprisingly, the answer is positive for
simple polygons as well as for undirected graphs. (However, for polygons with holes, and for
graphs with unit edge length, where the goal positions are restricted to the vertices, no such
online strategy exists.)

Remark that this way of measuring performance is one step beyond competitivity. Although
the definitions of the search ratio and the competitive factor are quite similar, the concepts
are different. In the competitive framework, we simply compare the online path from the start
to the goal to the shortest s–to–t path. For an approximation of the optimal search ratio, we
compare the online path to the best possible offline path, which—in turn—may already have a
bad competitive ratio.

The search strategies we will present use, as building blocks, modified versions of constant-
competitive strategies for online exploration, namely the exploration strategy by Hoffmann et
al. [19] for simple polygons, and the tethered graph exploration strategy by Duncan et al. [11].

At first glance it seems quite natural to employ an exploration strategy in searching—after all,
either task involves looking at each point of the environment. But there is a serious difference in
performance evaluation! In searching an environment, we compete against shortest start-to-goal
paths, so we have to proceed in a BFS manner.1 In exploration, we are up against the shortest

1But, as opposed to searching a data structure, we do not have pointers that allow us to jump to a different
location for free.

2

round trip from which each point is visible; this means, once we have entered some remote part
of the environment we should finish it, in a DFS manner, before moving on.2 However, we can fit
these exploration strategies to our search problem by restricting them to a bounded part of the
environment. This will be shown in Section 3 where we present our general framework, which
turns out to be quite elegant despite the complex definitions. The framework can be applied
to both online and offline search ratio approximations. In Section 2 we review basic definitions
and notations. Our framework will then be applied to searching in various environments like
trees, (planar) graphs, and (rectilinear) polygonal environments with and without holes in the
Sections 4 and 5. In Section 6 we give a construction scheme for lower bounds on the search
ratio. Finally, in Section 7, we conclude with a summary of our results.

2 Definitions

We want to find a good search path in some given environment E . This may be a tree, a
(planar) graph, or a (rectangular) polygon with or without holes. In a graph environment, the
edges may have either unit length or arbitrary length. Edge lengths do not necessarily represent
Euclidean distances, not even in embedded planar graphs. In particular, we do not assume that
the triangle inequality holds. The only restriction to the type of environments required by our
framework in Section 3 is that there is a shortest path from every point, p, in E back to the
start point, s, that is of the same length as a shortest path from s to p;3 that is, for all p in E
holds | sp(s, p)| = | sp(p, s)|.

In most cases, we want to search the whole environment, but there are special kinds of search
problems where we know that the goal may be hidden only in some parts of the scene. Let the
goal set G ⊆ E denote the part of the environment where the stationary goal may be located.
For example, if we search in a graph, G = (V,E), the goal may be located anywhere along the
edges of the graph; we call this setting geometric search and set G := V ∪ E. On the other
hand, we may consider a vertex search, where the goal is restricted to be hidden in a vertex;
in this case, we set G := V . Now, exploring E means to move around in E until all potential
goal positions G have been seen, whereas searching in E means to follow some exploration path
in E , until the goal has been seen. We require—as usual—that the distance to the goal is at
least 1; otherwise, no search strategy is able to achieve a bounded competitive factor. Further,
we assume that agents have perfect localization abilities; that is, they always know a map of
the already explored part of E , and they can always recognize when they visit some point for
the second time (the robot localization problem is actually a difficult problem by itself, see for
example [14]).

The searcher can either be blind (i.e., it can sense only its very close neighborhood) or it
can have vision; that is, it can see objects far away from its current position if the line of sight
is not blocked by an obstacle. The model of visibility depends on the type of environment; see
Sections 4 and 5 for more details.

We now introduce a few notations: Given a start point, s ∈ E , let π be a path in the
environment E starting in s. For a given point q ∈ π let π(q) denote the part of π from s
to q. For an arbitrary point p ∈ E let sp(p) denote a shortest path from s to p in the given
environment, and let pπ ∈ π denote the point from which a searcher following π sees p for the
first time, see Figure 1. We denote the length of a path segment π(p) by |π(p)|. Paths computed

2Observe, however, that neither plain BFS nor DFS would work! BFS is lacking the doubling element, and
DFS, in a simple polygon, would tend to follow a long convex chain even though a small step to the side could
be sufficient to see its endpoint.

3Note that this is not the case for directed graphs, but it holds for undirected graphs and polygonal environ-
ments. We will see later that there is no constant-competitive online search algorithm for directed graphs.

3

by some algorithm A will be named A, too. In particular, we write |A| for the length of the
tour computed by A. The main concept in our paper is the following:

Definition 1 Let E be an environment, G ⊆ E a goal set and s ∈ E a point in the environment.
A search path, π, with start point s is a path which starts in s and allows a searcher following π
to see every goal position in G from at least one point on π. The search ratio, sr(π), is defined
as

sr(π) := sup
p∈G

|π(pπ)| + |pπp|
| sp(p)| .

In other words, we compare the path walked by a searcher to the shortest path, and take
the worst ratio among all possible targets as the search ratio of our search path.

An optimal search path, πopt, is a search path with a minimum search ratio among all possible
paths in the environment. We denote the optimal search ratio by sropt; that is, sropt := sr(πopt).
For blind agents, p = pπ holds for every p ∈ E ; therefore, the search ratio can be computed as
sr(π) := sup

p∈G

|π(p)|
| sp(p)| .

π

s

pπ

p

Figure 1: A search path π in a polygon, visiting all essential cuts (the dotted lines). The dashed
path is the shortest path sp(p) from s to the goal p. Moving along π, p can first be seen from
pπ.

As the optimal search path seems hard to compute [21], we are interested in finding good
approximations of the optimal search path, in offline and online scenarios. We say a search
algorithm A is search-competitive with factor C—or C–search-competitive for short—if there
are constants C ≥ 1 and B ≥ 0, so that sr(πA) ≤ C · sropt + B holds for every path πA

computed by A. Note that πA is then a C · sr(πopt)-competitive search path in the usual
competitive sense. We use the term C–search-competitive also for the approximation factor of
offline approximation algorithms. If there is no C–search-competitive algorithm for any constant
C, we call this type of environments hard searchable.

In the following, we want to use existing exploration algorithms to approximate the optimal
search path. We assume that every exploration algorithm returns to the start point when the
whole environment is explored.

Definition 2 For a given environment E and d ≥ 1, let E(d) denote the part of E in distance
at most d from s, and OPT(d) the optimal exploration for E(d). Further, let Expl be an—online

4

or offline—algorithm for the exploration of environments of the given type. Expl is called depth-
restrictable if for every d ≥ 1 it is possible to modify the algorithm Expl to an algorithm Expl(d)
that explores E(d) (i.e., the algorithm sees at least all potential goal positions of distance at
most d—and maybe some more—before it returns to the start point), and there are constants
β > 0 and Cβ ≥ 1, so that

|Expl (d)| ≤ Cβ · |OPT(β · d)| (1)

holds for every environment of the given type (i.e., Expl(d) is Cβ-competitive with respect to
OPT(β · d)).

For example, the DFS traversal for trees is depth restrictable with β = 1 and Cβ = 1: In
every step we know exactly the distance to the tree’s root. Thus, we can decide whether we can
explore the children of the current node, or cannot explore the tree more deeply, because we
have reached depth d. Obviously, DFS is optimal also for depth-restricted exploration.

In the usual competitive framework, we would compare Expl(d) to the optimal algorithm
OPT(d) (i.e., β = 1). As we will see later, our more general definition makes it sometimes easier
to find depth-restrictable exploration algorithms. Usually, we cannot just take an exploration
algorithm Expl for E and restrict it to points in distance at most d from s. This way, we might
miss useful shortcuts outside of E(d). Even worse, it may not be possible to determine in an
online setting which parts of the environment belong to E(d), making it difficult to explore the
right part of E . In the Sections 4 and 5 we will derive depth-restricted exploration algorithms
for graphs and polygons by carefully adapting existing exploration algorithms for the entire
environment.

3 A General Approximation Framework

In this section, we show how to transform a depth-restrictable exploration algorithm, offline or
online, into a search algorithm, without losing too much on the approximation factor.

Let E be the given environment and πopt an optimal search path. Remember that we assume
that, for any point p, we can reach s from p on a path of length at most sp(p).

Let Expl be an exploration algorithm for E , and for d ≥ 1, let Expl(d) be the corresponding
depth-restricted exploration algorithm for E(d). Let OPT and OPT(d) denote the correspond-
ing optimal offline depth-restricted exploration algorithms. We assume that the exploration
strategies will always return to the start.

To obtain a search algorithm for E , we use the well-known doubling paradigm, and successively
apply our given exploration strategy with increasing exploration depth; that is, we successively
run Expl(2i), each iteration starting and ending in the start point, s.

Theorem 3 The doubling strategy based on a depth-restrictable exploration algorithm with
factors Cβ and β is a 4βCβ–search-competitive search algorithm for blind agents, and a 8βCβ–
search-competitive search algorithm for agents with vision.

Proof. Consider one iteration of the doubling strategy with search radius d ≥ 1. The optimal
search path πopt for E must in particular explore all possible goal positions in distance at most
d from s. Let lastd be the point on πopt from which we see the last point in distance at most d
from s when moving along πopt. Returning from lastd to s closes an exploration tour of E(d);
therefore,

|OPT(d)| ≤ |πopt(lastd)| + | sp(lastd)| .
In contrast to blind searchers, lastd may be located outside E(d) for agents with vision; thus,

we distinguish between blind agents and agents with vision to bound | sp(lastd)|. A blind agent
can detect lastd only by visiting it, so we have sp(lastd) ≤ d. Thus,

5

sropt ≥
|πopt(lastd)|

d
≥ |OPT(d)| − d

d
⇐⇒ |OPT(d)| ≤ d · (sropt + 1) . (2)

The worst case for the search ratio of the doubling strategy occurs when we explore the
environment up to some distance 2j+1 while the goal is in distance 2j + ε for some small ε > 0.
Thus, the search ratio of the doubling strategy is bounded by

sr(π) ≤
∑j+1

i=1 |Expl(2i)|
2j + ε

.

Expl is depth restrictable with factor Cβ , so we can apply Equation 1

sr(π) ≤ Cβ

2j
·

j+1
∑

i=1

|OPT(β · 2i)| .

Finally, with Equation 2 we get

sr(π) ≤ Cβ

2j
·

j+1
∑

i=1

β · 2i · (sropt + 1)

≤ βCβ ·
(

2j+2 − 2

2j

)

· (sropt + 1)

≤ 4β Cβ · (sropt + 1) .

If the agent has vision, it may see the last point in distance at most d from somewhere else,
so we cannot guarantee sp(lastd) ≤ d. We know only | sp(lastd)| ≤ |πopt(lastd)| (i.e., the return
path to s cannot be longer than the path the agent traveled along πopt). Thus,

sropt ≥
|πopt(lastd)|

d
≥ |OPT(d)|

2d
⇐⇒ |OPT(d)| ≤ 2d · sropt .

Further, we detect the goal by applying the exploration strategy with depth 2j+1 and return
to the start, then we still have to move to the goal. Similar to the case of blind agents, we obtain
for the search ratio an upper bound of

2j +
∑j+1

i=1 |Expl(2i)|
2j

≤ 1 + Cβ ·
∑j+1

i=1 |OPT(β2i)|
2j

≤ 1 + 2Cβ ·
∑j+1

i=1 β2i sropt

2j

≤ 1 + 8βCβ · sropt .

2

In the next two sections we will apply our framework to various types of environments and
agents. The difficult part is always to find good depth-restrictable exploration algorithms.

4 Searching Graphs

We distinguish between graphs with unit length and arbitrary length edges, planar and nonplanar
graphs, directed and undirected graphs, as well as vertex and geometric search. We consider
only blind agents: Located at a vertex of a (directed) graph the agent senses only the number

6

of outgoing edges, but neither their lengths nor the positions of the other vertices are known.
Incoming edges cannot be sensed; see Deng and Papadimitriou [9]. Blind agents must eventually
visit all points in the goal set. In the vertex search problem, we assume w.l.o.g. that graphs do
not have parallel edges. Otherwise, there can be no constant–search-competitive vertex search
algorithm: In Figure 2(i), the optimal search path s → v → t → s has length 3, whereas any
online search path can be forced to cycle often between s and v before traversing the edge v → t.
Note that we can also use undirected edges.

4.1 Hard-searchable Graphs

First, we show that for many graph classes there is no constant–search-competitive online search
algorithm. Incidentally, there is also no constant-competitive online exploration algorithm for
these graph classes. Note that we have the following implications for hard-searchable graphs:

• If planar graphs are hard searchable, then so are nonplanar graphs.

• If graphs with unit length edges are hard searchable, then so are graphs with arbitrary
length edges.

• If undirected graphs are hard searchable, then so are directed graphs (we can replace each
undirected edge with directed edges in both directions).

(i) (ii)

t
v

s

Figure 2: There is no constant–search-competitive vertex search algorithm for (i) graphs with
parallel edges, (ii) vertex search in nonplanar graphs.

Theorem 4 For blind agents, there is no constant–search-competitive online algorithm in the
following settings:

1. Vertex search in nonplanar graphs

2. Vertex search and geometric search in directed planar graphs

3. Vertex search in planar graphs with arbitrary edge lengths

Proof.

1. Consider the graph in Figure 2(ii) with unit length edges. It is a k-clique, where each
vertex has a sibling that has only one connection to the clique.

The optimal search ratio is Θ(k): We successively visit every clique vertex and explore its
sibling before proceeding to the next clique vertex. This yields a path of length 3k. On
the other hand, any online search algorithm can be forced to travel Ω(k2) before reaching
the last vertex, so it has search ratio Ω(k2). Thus, it is not better than k-competitive.

Note that in a k-clique without siblings a BFS traversal achieves the optimal search ratio.

7

(ii)

s v

1 1

1 1

s t

ε

ε
ε

...

w

(i)

Figure 3: There is no constant–search-competitive vertex search algorithm for (i) vertex search
and geometric search in directed graphs (the nodes ◦ occur only in the case of unit-length edges),
(ii) vertex search in planar graphs with arbitrary edge length (the arrows denote the points on
the edges where the searcher decides to return to s).

2. For vertex search, consider the planar graph in Figure 3(i) with a very long edge from
s to w. The optimal search path, s → v → w, has search ratio 1. However, any online
algorithm can be forced to first explore the long edge from s to w, resulting in a very high
search ratio.

If we are restricted to unit length edges, we can add more vertices along the long edge
(marked with ◦ in Figure 3(i)). Then the optimal search path explores this long path after
exploring the short cycle s → w → s. Because in the worst case the goal is hidden on the
first vertex of the long path, this path achieves a search ratio of 5.

For a geometric search—with unit length edges or arbitrary edges—, we can use the same
planar graph. Again, we force the online algorithm to explore the long edge at first. In
contrast, the optimal strategy visits the cycle s → w → s before exploring the long edge.
The optimal strategy achieves its worst case if the goal is hidden in distance 1 on the long
edge.

3. For any given online search algorithm, we construct a planar graph as in Figure 3(ii) with
k outgoing edges at the start vertex, s. An online algorithm visits one of the k edges at
first. If the algorithm does not return to s while exploring this edge, the currently visited
edge is the only long edge in the graph and all other edges are very short. The optimal
strategy visits only short edges; thus, this algorithm can be arbitrarily bad.

Hence, to achieve a good approximation factor, an online algorithm must at some point
decide to stop exploring the first edge and to return to s (the small arrows in the figure
indicate this point). We place the endpoint of the currently visited edge immediately
behind the last visited point, and continue similarly with the next k − 2 edges. The last
edge ends in vertex t and its length is the minimum length among the first k − 1 edges.
Then we connect the endpoints of the first k − 1 edges to t by an edge of length ε, where
ε > 0 is some very small number. The optimal search path in this graph first travels the
last edge and then visits every other vertex quickly from t. Thus, its search ratio is close
to 1. On the other hand, the online algorithm has search ratio at least k. Note that we
introduced all the edge endpoints (instead of having the edges ending in t) because we
assumed that there are no parallel edges.

2

Note that there is a O(D8)-competitive exploration for directed graphs by Fleischer and
Trippen [15]. D denotes the deficiency of the given graph, that is the minimum number of edges
that must be added to get an Euler graph. This example shows that there are settings where

8

there is no constant–search-competitive online algorithm, although there is O(D8)–competitive
exploration algorithm. The problem is that this algorithm is not depth restrictable. Besides,
directed graphs do not fulfill | sp(s, p)| = | sp(p, s)| for all p in E , so we cannot apply our
framework to directed graphs, anyway.

4.2 Competitive Search in Graphs

In this subsection, we present search-competitive online and offline search algorithms for the
remaining graph classes. Remark that we consider only undirected graphs.

4.2.1 Trees

On trees, DFS is a 1-competitive online exploration algorithm for vertex and geometric search
that is depth restrictable; it is still 1-competitive when restricted to search depth d, for any d ≥ 1.
Thus, the doubling strategy gives a polynomial time 4–search-competitive search algorithm
for trees—offline as well as online. On the other hand, it is an open problem whether the
computation of an optimal vertex or geometric search path in trees with unit length edges is
NP-complete [21].

4.2.2 Vertex Search in Graphs with Unit Length Edges

Now, we give competitive search algorithms for vertex search in planar graphs with unit length
edges and—in the next section—for geometric search in undirected graphs with arbitrary length
edges. Both algorithms are based on an online algorithm for tethered graph exploration.

In the tethered exploration problem the agent is fixed to the start point by a rope of restricted
length. An optimal solution to this problem was given by Duncan et al. [11]. Their algorithm,
CFS, explores an unknown graph with unit length edges in 2|E| + (4 + 16

α
)|V | edge traversals,

using a rope length of (1+α)d, where d is the distance of the point farthest away from the start
point and α > 0 is some parameter. Note that CFS explores the whole graph in spite of the
tethered restriction.

CFS explores the graph in a mixture of depth-bounded DFS on G, DFS on spanning trees
of parts of G, and recursive calls to explore certain large subgraphs. The basic idea of CFS is to
maintain a set, T , of edge-disjoint, incompletely4 explored subtrees—more precisely, spanning
trees of uncompleted graph parts—that fulfill certain conditions on minimum size and maximal
depth. Initially, T consists of one tree containing only the start node, s. The strategy succes-
sively selects the subtree nearest to s and walks to its root. Then, CFS traverses the subtree
using DFS. For each encountered, incompletely explored vertex, CFS starts a depth-bounded
DFS. In this process, new vertices are discovered and new subtrees are added to T , possibly
split into several smaller subtrees if they do not fulfill the conditions.

The costs for applying CFS sum up from relocation from s to the roots of the subtrees and
back to s, the DFS traversals, and the costs for the depth-bounded DFS starting in unexplored
vertices. The latter traverses only unexplored edges; thus, we have costs 2|E| for this part. For
a subtree, T , with |T | vertices, we have costs 2|T | for the DFS traversal. The size restrictions
for the subtrees ensure that we can bound the relocation costs by 8

α
|T |. As the subtrees may

overlap, we can bounded the sum of all vertices in the subtrees by 2|V |. Altogether, we get

2|E| +
(

2 +
8

α

)

∑

T

|T | ≤ 2|E| +
(

2 +
8

α

)

· 2|V | = 2|E| +
(

4 +
16

α

)

|V | .

4That is, there are vertices that are already discovered, but still have unvisited incident edges.

9

As Duncan et al. pointed out, the algorithm can be used even if the necessary rope length,
d, is not known: They explore the whole graph by successively applying CFS and doubling d in
every step. The important part is that the analysis still holds in this case. Particularly, we can
apply CFS for a depth-restricted exploration (i.e., explore only a subgraph of G). For d ≥ 1,
let G(d) denote the subgraph5 of G = (V,E) where all points p ∈ V ∪ E have distance at most
(1 + α)d from s. For convenience, let G∗ = (V ∗, E∗) := G((1 + α)d). To explore all vertices in
G(d)—and maybe some additional vertices from G((1 + α)d)—using a rope of length (1 + α)d,
the number of edge traversals is bound by

2|E∗| +
(

4 +
16

α

)

|V ∗| .

Let us call this algorithm CFS(d). We have

Lemma 5 In planar graphs with unit length edges, CFS is a depth-restrictable algorithm for
online vertex exploration with β = 1 + α and Cβ = 10 + 16

α
.

Proof. As G∗ is planar, we have |E∗| ≤ 3|V ∗|−6 by Euler’s formula. Thus, the number of edge
traversals of CFS(d) is most

2 |E∗| +
(

4 +
16

α

)

|V ∗| ≤ 6 |V ∗| +
(

4 +
16

α

)

|V ∗| =

(

10 +
16

α

)

|V ∗| .

On the other hand, we have OPT((1 + α)d) ≤ |V ∗|, because the optimal algorithm must visit
each vertex in V ∗ at least once. 2

Now, we can apply our framework with CFS:

Theorem 6 The doubling strategy based on CFS(d) is a better than 206–search-competitive
online vertex search algorithm for blind agents in planar graphs with unit length edges.

Proof. By Lemma 5, CFS(d) is depth restrictable with β = 1 + α and Cβ = 10 + 16
α

. By
Theorem 3, the doubling strategy based on CFS is 4βCβ-competitive. Altogether, we have:

4 · β · Cβ = 4 · (1 + α) ·
(

10 +
16

α

)

= 104 + 40α +
64

α
.

By simple analysis, we get the minimal competitive ratio of 205.192 . . . for α =
√

8
5 . 2

4.2.3 Geometric Search in Graphs with Arbitrary Length Edges

We note that CFS(d) can be modified to work on graphs with arbitrary length edges: Instead of
counting the number of edge traversals, the algorithm has to track the length of the traversed
edges. Now, it may happen that the maximal rope length is reached on an edge somewhere
between two vertices. In this case, we interrupt the edge traversal, add an auxiliary vertex and
split the edge in two parts. Note that the added vertex is incompletely explored, so CFS will
return to this vertex in a successive stage. Let `(E) denote the total length of all edges in E. It
is possible to adapt the proofs by Duncan et al. [11] to prove the following lemma.

Lemma 7 In graphs with arbitrary length edges, CFS(d) explores all edges and vertices in G(d)
using a rope of length (1 + α)d at a cost of at most (4 + 8

α
) · `(E∗).

5In the case of unit-length edges, we omit all edges with length < 1 in the subgraph G(d). Such edges occur
if d is not an integer value.

10

Proof. (Sketch) The proof is similar to the unit-length case, but we can no longer use the
number of visited vertices to bound the number of traversed edges. Instead, we bound the costs
for the depth-bounded DFS by 2 `(E∗). As the subtrees are edge disjoint, we can bound the
costs for the DFS traversals by 2 `(E∗), too. The size restriction on the subtrees still ensures
that the relocation costs are bound by 8

α
`(E∗). Altogether, we get (4 + 8

α
) · `(E∗). Note that

we have no additional costs for the auxiliary vertices, because we count only edge lengths and
by inserting an auxiliary vertices we split one edge into two smaller edges whose total length is
the same as the original edge. 2

Lemma 8 In undirected graphs with arbitrary length edges, CFS is a depth-restrictable online
geometric exploration algorithm with β = 1 + α and Cβ = 4 + 8

α
.

Proof. The total cost of CFS(d) is at most (4 + 8
α
) · `(E∗) by Lemma 7. On the other hand,

OPT((1 + α)d) must traverse each edge in E∗ at least once. 2

Theorem 9 The doubling strategy based on CFS(d) is a better than 94–search-competitive
online geometric search algorithm for blind agents in undirected graphs with arbitrary length
edges.

Proof. By Lemma 8, CFS(d) is depth restrictable with β = 1 + α and Cβ = 4 + 8
α
. Thus, by

Theorem 3 the doubling strategy is 4βCβ-competitive, and we have:

4 · β · Cβ = 4 · (1 + α) ·
(

4 +
8

α

)

= 48 + 16α +
32

α
.

Simple analysis shows that this factor is minimal for α =
√

2, yielding a factor of 93.254 2

4.2.4 Offline Searching

In the offline setting, the searcher knows the graph, but it still does not know the location of the
target. Thus, we want to compute (or approximate) an optimal search path in a known graph.

Computing an optimal search path in a known graph is NP-hard [21], but we can use our
framework to give an approximation. Given a graph G = (V,E) and an exploration depth
d ≥ 1 we can compute the subgraph G(d). Now, we have to find an appropriate exploration
strategy for G(d). In the case of a vertex search, exploring G(d) amounts to finding a Traveling
Salesperson Tour on G(d). This problem is NP-hard, too, but we can approximate a TSP-Tour
within factor Cβ = 2 using the mimimum–spanning-tree heuristic,6 or we can use one of the
1 + ε approximations by Grigni et al. [16], Arora [3], or Mitchell [22].

The problem of finding a minimum-length tour that visits every edge of a given graph at
least once is known as the Chinese Postman Problem, and can be solved in polynomial time
for graphs that are either directed or undirected [12, 23]. In this case, we have Cβ = β = 1.
Altogether we have

Theorem 10 There is a 4–search-competitive strategy for offline geometric search and a 8–
search-competitive strategy for offline vertex search.

6Note that we cannot apply the Christofides heuristic [7], because the triangle-inequality is not fulfilled in
arbitrary graphs.

11

5 Searching Polygons

5.1 Simple Polygons

A simple polygon, P , is given by a closed, nonintersecting polygonal chain. Our searcher is
equipped with ideal, unlimited vision; that is, it is provided with the full visibility polygon with
respect to the searchers current position.

To apply our framework, we need a depth-restrictable online exploration algorithm. The
best known algorithm, PolyExplore, for the online exploration of a simple polygon by Hoffmann
et al. [19] achieves a competitive ratio of 26.5.

(i)

(4) (2)

(1)(3)

(ii)

vrv`

P (d)

P ′(d)

s

OPT(d)

s

P (d)

e1

e2

e3

OPT(d)

e4

r2

Figure 4: (i) PolyExplore(d) explores the right reflex vertex vr along a circular arc (1), returns
to the start (2) and explores the left reflex vertex v` likewise (3)+(4). OPT(d) (dashed line)
leaves P (d).
(ii) PolyExplore(d) leaves P (d) whereas the shortest exploration path for P (d) lies inside P (d).
In both cases, we can extend P (d) (dark gray) to P ′(d) (light gray) containing both
PolyExplore(d) and OPT(d).

Let P (d) ⊆ P denote the part of the polygon P where all points have a distance at most d
from the start. We can modify PolyExplore to explore P (d): During the exploration, an unseen
part of P always lies behind a cut cv emanating from a reflex vertex, v. These reflex vertices
are called unexplored as long as we have not visited the corresponding cut cv . The algorithm
maintains a list of unexplored reflex vertices and successively visits the corresponding cuts. While
exploring a reflex vertex (along a sequence of line segments and circular arcs), more unexplored
reflex vertices may be detected or unexplored reflex vertices may become explored. These
vertices are inserted into or deleted from the list, respectively. In PolyExplore(d), unexplored
reflex vertices in a distance greater than d from the start are simply ignored; that is, although
they may be detected they will not be inserted into the list. Let OPT(d) be the shortest path
that sees all points in P (d).

Note that both PolyExplore(d) and OPT(d) may exceed P (d) as shown in Figure 4. In (i)
PolyExplore(d) explores successively the vertices vr and v`, but OPT(d) visits the cuts outside
P (d). In (ii) PolyExplore(d) leaves P (d) in e4. However, we can enlarge P (d) to P ′(d) by
a convex region, so that the resulting polygon contains PolyExplore(d) as well as OPT(d),
see Figure 4. Because we add no reflex vertices, we do not change the paths of OPT(d) and
PolyExplore(d), even if the extensions for different parts of P (d) overlap. Thus, the analysis of
PolyExplore by Hoffmann et al. still holds in P ′(d) and we have

12

Lemma 11 In a simple polygon, PolyExplore is a depth-restrictable online exploration algo-
rithm with β = 1 and Cβ = 26.5. 2

Theorem 12 The doubling strategy based on PolyExplore(d) is a 212–search-competitive online
search algorithm for an agent with vision in a simple polygon. There is also a polynomial time
8–search-competitive offline search algorithm.

Proof. The online search-competitiveness follows from Lemma 11 and Theorem 3.
If we know the polygon, we can compute OPT(d) in polynomial time by adapting a cor-

responding algorithm for P . Every known polynomial time offline exploration algorithm visits
the essential cuts in a certain sequence, see for example [6, 26, 25, 10]. Any of these algorithms
can be used in our framework. As an optimal algorithm has approximation factor C = 1, our
framework yields an approximation of the optimal search path with a factor of 8.

The overall running time of the algorithm seems to depend on the distance to the farthest
reflex vertex of the polygon. However, we skip a step with distance 2i if there is no reflex vertex
within a distance between 2i−1 and 2i. Thus, we always explore at least one new vertex in
every iteration of the doubling strategy. Altogether, the total running time is bounded by a
polynomial in the number of the vertices of P . 2

Note that there is a considerable gap between the upper bound given by Hoffmann el al. [19]
and best known lower bound of 1.2825 [18]. The authors conject that the actual performance of
PolyExplore is below 10 [19]; the worst case known to so far is 5 [17]. Under this assumption,
the search-competitivity of a doubling strategy based on PolyExplore can be expected to be
below 80.

Now the question arises whether there is a polynomial time algorithm that computes the
optimal search path in a simple polygon. We have to visit every essential cut, so we can try
to visit them in any possible order. Anyway, we do not know exactly which point on the cut
we should visit. We are not sure whether there are only a few possibilities as in the shortest
watchman route problem. In other words, it is unknown whether this subproblem is discrete at
all. So the problem of computing an optimal search path in a polygon is still open.

Even for rectilinear simple polygons no polynomial time algorithm for the optimal search
path is known, but we can find better online algorithms:

Theorem 13 For an agent with vision in a simple rectilinear polygon there is a 8
√

2–search-
competitive online search algorithm. There is also a polynomial time 8–search-competitive offline
search algorithm.

Proof. For a rectilinear simple polygon, P , Papadimitriou et al. [8] introduced a simple
√

2-
competitive online exploration algorithm. This algorithm is depth restrictable—we simply ignore
reflex vertices farther away than d—while remaining

√
2-competitive compared to the restricted

optimal path OPT(d). The optimal path never leaves P (d), because we have only 90◦ reflex
vertices. Our framework gives a 8

√
2–search-competitive online search algorithm.

In the offline setting, we can obtain a polynomial time 8–search-competitive search algorithm
based on an optimal depth-restricted exploration algorithm similar to Theorem 12. 2

5.2 Polygons with Holes

In this section, we show that there is no constant–search-competitive online search algorithm for
polygons with (rectangular) holes. Albers et al. [1] showed that there is no constant-competitive
online exploration algorithm for polygons with holes. They filled a rectangle of height k and

13

OPT

2k

recursive subproblem

k

k

s′

s

Figure 5: Lower bound construction for approximating the optimal search path in polygons with
holes (start point s′). The upper half shows the lower bound for the exploration task by Albers
et al. (start point s).

width 2k, k ≥ 2, with O(k2) rectangular holes such that the optimal exploration tour has a
length in O(k), whereas any online exploration algorithm needs to travel a distance in Ω(k2).
The details of the construction are not important here; just note that every point p ∈ E has at
most the distance 3k from the start point, s, see Figure 5.

Theorem 14 For an agent with vision in a polygon with holes there is no constant–search-
competitive online search algorithm.

Proof. Unfortunately, in the lower bound construction of Albers et al. the optimal exploration
paths yields already a bad search ratio. Thus, we enlarge the setting by a thin corridor of length
k that leads to the former start point, s. Our new start point, s′, is located at the end of the
new corridor, see Figure 5. Now, every point that is not visible from s′ is at least k steps away
from s′; that is, sp(s′, p) ≥ k holds for such a point p. The optimal exploration path is still never
longer than C · k for a constant C; thus, the optimal exploration path is a C-approximation of
the optimal search path. In the new scene, every online exploration algorithm is forced to walk
a path of length in Ω(k2). Because every online approximation of the optimal search path is
also an online exploration algorithm, there are points that are discovered after walking a path
length in Ω(k2), although their distance to s′ is in O(k). Thus, no online approximation is able
to achieve a constant approximation factor. 2

Since the offline exploration problem is NP-complete (by straightforward reduction from
planar TSP) we cannot use our framework to get a polynomial time approximation algorithm of
the optimal search path. However, there is an exponential time 8-approximation algorithm. We
can list the essential cuts of OPT(d) in any order to find the best one. Applying our framework
gives an approximation factor of 8 for the optimal search ratio.

The results of Koutsoupias et al. [21] imply that the offline problem of computing an optimal
search path in a known polygon with holes is NP-complete.

14

6 A General Lower Bound

We have seen that for certain types of environments there exists an approximation for the optimal
search path if there exists a depth-restrictable, competitive exploration strategy. Further, we
have seen that polygons with holes are hard searchable. Now, we want to generalize the latter
result; that is, we want to show that—under a certain condition—there is no approximation up
to a constant factor if there is no competitive exploration strategy for environments of the given
type.

Usually, the nonexistence of competitive exploration strategies is shown by giving a lower
bound—a scenario, in which every exploration strategy is forced to walk a path whose length
exceeds the length of the optimal exploration path by more than a constant factor. To transfer
such a result to search path approximations, we require that the scenario can be extended around
the start point, such that the start point moves further away from the original scenario. We
used this technique in Section 5.2.

Definition 15 Let E be an environment of arbitrary type, and s be a start point in E . We call
E s-extendable if we can enlarge E locally around the start point; that is, it is possible to choose
a new start point, s′, outside E , and enlarge E to E ′, such that s′ is contained in E ′ and every
path from s′ to a point in E passes s.

Theorem 16 If there is no constant-competitive online exploration algorithm for environments
of a given type, and the corresponding lower bound is s-extendable, then there is no competitive
online approximation of the optimal search path.

Proof. Let S, |S| = n, be the lower bound construction, OPT denote the optimal exploration
algorithm, and f(n) be a function, so that |OPT| ∈ O(f(n)) holds. There is no competitive
online exploration, so |A| ∈ ω(f(n)) holds for every online algorithm A.

Because any online approximation of the optimal search path is also an online exploration
strategy, any online approximation strategy in S can be forced to detect the last point, p, after
traversing a path with a length in ω(f(n)).

We construct a lower bound, S ′, for the online approximation of the search path by placing
a new start point, s′, outside S with distance f(n) and connecting it to the former start point
s. In S ′ any online search strategy can also be forced to detect the last point, p, after moving
a path in ω(f(n)), whereas the distance from p to s′ is still in O(f(n)). Therefore, the search
ratio of any online search path in S ′ is in Ω(n). On the other hand, the optimal exploration
path in S ′ is still in O(f(n)), yielding—of course—a constant optimal search ratio. Altogether,
no constant-competitive online approximation exists. 2

7 Conclusion and Open Problems

There are environments where no online search strategy can achieve a constant competitive
factor. Therefore, we used the search ratio as a parameter of a given environment that gives a
measure for the environment’s searchability. A search strategy is considered “good” if it achieves
a good approximation of the optimal search ratio; that is, the search ratio of an online strategy
is at most a constant factor worse than the optimal search ratio.

We showed that we can use depth-restrictable exploration strategies—exploration strate-
gies that can be modified to explore the environment only up to a certain depth while they
are still competitive—to approximate the optimal search path by successively applying the ex-
ploration with exponentially increasing exploration depths. For blind agents we showed that
there are 4βCβ-approximations, for searchers with vision 8βCβ-approximations, where β and

15

Cβ are parameters that depend on the modifications to turn an exploration algorithm into a
depth-restricted exploration. We applied our results to various types of graphs and polygons,
see Table 7.

Further, we showed that there is no constant–search-competitive strategy for polygons with
holes. The main idea for this proof—enlarging the environment close to the start point—can
be generalized for environments that fulfill a certain condition we called s-extendable. We also
showed that some graph settings—including directed graphs—are hard searchable.

Altogether, we showed a close relation between searching and exploring: For environments
fulfilling | sp(s, p)| = | sp(p, s)| for all p in E there is an equivalence between constant-competitive
exploring and searching if the exploration strategy is depth restrictable and the lower bounds
are s-extendable. Naturally, these results lead to the question if there is a stronger connection.
More precisely, can we omit the prerequisites ’depth restrictable’ and ’s-extendable’, and show
the following conjecture?

Conjecture 17 For a given type of environments that fulfills ∀p ∈ E : | sp(s, p)| = | sp(p, s)|,
there is a constant–search-competitive strategy if and only if there exists a constant-competitive
online exploration for environments of this type.

Proving this conjecture would show a closer relation between exploration and searching: We
are able to approximate the optimal search path—with other words, we can find a good search
strategy—if there is a constant-competitive exploration strategy. And, vice versa, we have no
chance to find a good search strategy if no constant-competitive exploration is possible. Note
that the sp-condition is necessary, anyway. Not only because our approximation framework
relies on it, it also seems to be hard to find depth-restrictable exploration strategies for such
environments. For example, there is a competitive exploration, yet not depth restrictable, for
directed graphs.

16

Table 1: Summary of our approximation results. The entry marked with * had earlier been
proven by Koutsoupias et al. [21]. They had also shown that computing the optimal search path
is NP-complete for (planar) graphs. It is also NP-complete for polygons with holes, whereas it
is not known to be NP-complete for trees and polygons without holes.

Polytime approximation ratio
Environment Edge length Goal

Online Offline

Tree unit, arbitrary vertex, geometric 4 4

Planar graph arbitrary vertex no search-competitive alg. 8

Planar graph unit vertex 205.192 . . . 8

Undirected graph unit, arbitrary vertex no search-competitive alg. 8∗

Undirected graph arbitrary geometric 93.254 . . . 4

Simple polygon 212 8

Rect. simple polygon 8
√

2 8

Polygon with holes no search-competitive alg. ?

17

References

[1] S. Albers, K. Kursawe, and S. Schuierer. Exploring unknown environments with obstacles. In Proc.
10th ACM-SIAM Sympos. Discrete Algorithms, pages 842–843, 1999.

[2] S. Alpern and S. Gal. The Theory of Search Games and Rendezvous. Kluwer Academic Publications,
2003.

[3] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geo-
metric problems. J. ACM, 45(5):753–782, 1998.

[4] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching in the plane. Inform. Comput., 106:234–
252, 1993.

[5] P. Berman. On-line searching and navigation. In A. Fiat and G. Woeginger, editors, Competitive
Analysis of Algorithms. Springer-Verlag, 1998.

[6] W.-P. Chin and S. Ntafos. Shortest watchman routes in simple polygons. Discrete Comput. Geom.,
6(1):9–31, 1991.

[7] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. In J. F.
Traub, editor, Sympos. on New Directions and Recent Results in Algorithms and Complexity, page
441, New York, NY, 1976. Academic Press.

[8] X. Deng, T. Kameda, and C. Papadimitriou. How to learn an unknown environment I: The rectilinear
case. J. ACM, 45(2):215–245, 1998.

[9] X. Deng and C. H. Papadimitriou. Exploring an unknown graph. Journal of Graph Theory, 32:265–
297, 1999.

[10] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of polygons. In Proc. 35th
Annu. ACM Sympos. Theory Comput., pages 473–482, 2003.

[11] C. A. Duncan, S. G. Kobourov, and V. S. A. Kumar. Optimal constrained graph exploration. In
Proc. 12th ACM-SIAM Symp. Discr. Algo., pages 307–314, 2001.

[12] J. Edmonds and E. L. Johnson. Matching, euler tours and the chinese postman. Math. Prog.,
5:88–124, 1973.

[13] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trippen. Competitive online approxi-
mation of the optimal search ratio. In Proc. 12th Annu. European Sympos. Algorithms, volume 3221
of Lecture Notes Comput. Sci., pages 335–346. Springer-Verlag, 2004.

[14] R. Fleischer, K. Romanik, S. Schuierer, and G. Trippen. Optimal robot localization in trees. Infor-
mation and Computation, 171:224–247, 2001.

[15] R. Fleischer and G. Trippen. Exploring an unknown graph efficiently. In Proc. 13th Annu. European
Sympos. Algorithms, volume 3669 of Lecture Notes Comput. Sci., pages 11–22. Springer-Verlag, 2005.

[16] M. Grigni, E. Koutsoupias, and C. H. Papadimitriou. An approximation scheme for planar graph
TSP. In Proc. 36th Annu. IEEE Sympos. Found. Comput. Sci., pages 640–645, 1995.

[17] R. Hagius. Untere Schranken für das Online-Explorationsproblem. Diplomarbeit, FernUniversität
Hagen, Fachbereich Informatik, Mai 2002.

[18] R. Hagius, C. Icking, and E. Langetepe. Lower bounds for the polygon exploration problem. In
Abstracts 20th European Workshop Comput. Geom., pages 135–138. Universidad de Sevilla, 2004.

[19] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The polygon exploration problem. SIAM J.
Comput., 31:577–600, 2001.

[20] R. Klein. Algorithmische Geometrie. Springer, Heidelberg, 2nd edition, 2005.

[21] E. Koutsoupias, C. H. Papadimitriou, and M. Yannakakis. Searching a fixed graph. In Proc. 23th
Internat. Colloq. Automata Lang. Program., volume 1099 of Lecture Notes Comput. Sci., pages 280–
289. Springer, 1996.

18

[22] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-
time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput.,
28:1298–1309, 1999.

[23] C. H. Papadimitriou. On the complexity of edge traversing. J. ACM, 23:544–554, 1976.

[24] S. Schuierer. On-line searching in simple polygons. In H. Christensen, H. Bunke, and H. Noltemeier,
editors, Sensor Based Intelligent Robots, volume 1724 of LNAI, pages 220–239. Springer Verlag,
1997.

[25] X. Tan, T. Hirata, and Y. Inagaki. Corrigendum to “an incremental algorithm for constructing
shortest watchman routes”. Internat. J. Comput. Geom. Appl., 9(3):319–323, 1999.

[26] X. H. Tan, T. Hirata, and Y. Inagaki. An incremental algorithm for constructing shortest watchman
routes. Internat. J. Comput. Geom. Appl., 3(4):351–365, 1993.

19

