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Abstract. The spanning ratio and maximum detour of a graph G embedded in
a metric space measure how well G approximates the minimum complete graph
containing G and metric space, respectively. In this paper we show that comput-
ing the spanning ratio of a rectilinear path P in L1 space has a lower bound of
Ω(n log n) in the algebraic computation tree model and describe a deterministic
O(n log2 n) time algorithm. On the other hand, we give a deterministic O(n log2 n)
time algorithm for computing the maximum detour of a rectilinear path P in L1

space and obtain an O(n) time algorithm when P is a monotone rectilinear path.

Key words: rectilinear path, maximum detour, spanning ratio, dilation, L1 met-
ric, Manhattan plane

1 Introduction

Given a connected graph G = (V, E) embedded in a metric space M, the detour between
any two distinct points pi, p j in U =

⋃
e∈E e is defined as

δG(pi, p j) =
dG(pi, p j)
||pi, p j||M ,

where ||pi, p j||M denotes the distance between pi and p j in M and dG(pi, p j) is the short-
est path between pi and p j on G. The maximum detour δ(G) of G is defined as the
maximum detour over all pairs of distinct points in U, i.e.,

δ(G) = max
pi,p j∈U,pi,p j

δG(pi, p j).

If we restrict the points pi, p j to the vertex set of G, then the maximum detour is
also called spanning ratio, dilation or stretch factor σ(G) of G, i.e.,

σ(G) = max
pi,p j∈V,pi,p j

δG(pi, p j).
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Given any connected graph embedded in any metric space, the spanning ratio can
be computed in a straightforward manner by computing the all-pairs shortest paths of
G. By using Dijkstra’s algorithm [8] with Fibonacci heaps [9], we can find the spanning
ratio in O(n(m+n log n)) time and O(n) space, where n and m are the numbers of vertices
and edges, respectively.

Sometimes the geometric properties of special graph classes can be exploited to
obtain a better upper bound [3, 13, 18]. If G is a connected graph embedded in the
Euclidean space R2, it is easy to see that the maximum detour is infinite if G is non-
planar. But if G is planar, we can compute the maximum detour by first computing
shortest paths for all pairs of vertices in O(n2 log n) time (since |E| = O(n)) and then
using this information to find the maximum detour between each pair of edges. Wulff-
Nilsen [19] recently gave an algorithm for computing the maximum detour of a planar
graph in R2 in O(n

3
2 log3 n) expected time. The case of G being a planar polygonal

chain is of particular interest. Agarwal et al. [1] gave an O(n log n) time randomized
algorithm for computing the spanning ratio or maximum detour of a polygonal path in
R2, and used it to obtain an O(n log2 n) time randomized algorithm for computing the
spanning ratio or maximum detour of cycles and trees in R2. They also claimed that
it is possible to obtain a deterministic algorithm for computing the spanning ratio or
maximum detour of a polygonal path in O(n logc n) running time by parametric search,
for some constant c > 2.

Ebbers-Baumann et al. [5] developed an ε-approximation algorithm that runs in
O( n

ε
log n) time for computing the maximum detour of a polygonal chain inR2. Narasimhan

and Smid [15] studied the problem of approximating the spanning ratio of an arbitrary
geometric connected graph in Rd. They gave an O(n log n)-time algorithm that com-
putes a (1 − ε)-approximate value of the spanning ratio of a path, cycle, or tree in Rd.

In this paper, we show that computing the spanning ratio of a rectilinear path P in
L1 space has a lower bound of Ω(n log n) in the algebraic computation tree model and
describe a deterministic O(n log2 n) time algorithm. This is the first sub-quadratic deter-
ministic algorithm for computing the spanning ratio of a polygonal path embedded in
a metric space avoiding complicated parametric search methods. We also give a deter-
ministic O(n log2 n) time algorithm for computing the maximum detour of a rectilinear
path P in L1 space, and we obtain an optimal deterministic O(n) time algorithm when
P is a monotone rectilinear path.

2 Preliminaries and Problem Definition

In this section we present the preliminaries and give the formal problem definitions.
In the L1 plane (also called Manhattan plane), the distance of two points pi = (xi, yi)
and p j = (x j, y j) is defined as ||pi, p j||L1 = dL1 (pi, p j) = |xi − x j| + |yi − y j|. A path
P = (V, E) of n ≥ 2 vertices is a connected undirected graph, in which every vertex has
degree two, except the two end vertices of degree one. If all of the edges of a path are
either horizontal or vertical, we call this path a rectilinear path. In this paper, we will
focus on rectilinear paths in which a vertex is either an end vertex or a corner vertex.
A corner vertex v ∈ V is a common vertex of a horizontal edge and a vertical edge and
has degree 2. In general, vertices may not necessarily exist only at corners or at ends.
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But the existence of non-corner and non-end vertices will not affect the correctness and
complexities of our algorithms. Thus the algorithms presented in this paper can solve
the problem for general rectilinear paths as well. Figure 2-1 (a) shows an example,
where we can find that apart from the two end vertices of the rectilinear path, the other
vertices are placed at corners.
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Figure 2-1 (a) A rectilinear path with all vertices at corners.
(b) A rectilinear path that is monotone with respect to the x-axis.

If a rectilinear path has non-decreasing x-coordinates from one of its end vertices to
the other, we say that this path is monotone with respect to the x-axis. Monotone with
respect to the y-axis can be defined similarly. Without loss of generality, we assume that
monotone rectilinear paths in this paper are all monotone with respect to the x-axis. We
refer to the vertices of an n-vertices monotone rectilinear path P from its left end to its
right end as p1, p2, ..., pn. Figure 2-1 (b) shows an example of a x-monotone rectilinear
path.

Consider a connected graph G = (V, E) in the L1 plane. The distance (weight) of an
edge e ∈ E is defined as the L1 distance of its two incident vertices, and the distance
of any two points pi and p j on G (not necessarily in V) is defined as the length of the
shortest path between them on G, denoted as dG(pi, p j).

In this paper we will compute the spanning ratio and maximum detour of a rectilin-
ear path P in the L1 plane. The rest of the paper is organized as follows. In Section 3, we
show a lower bound for computing the spanning ratio of a rectilinear path P in the L1
plane, even for the case when the path P is monotone. Section 4 gives a deterministic
O(n log2 n) time algorithm for computing the spanning ratio of P. Section 5 gives an
O(n log2 n) time algorithm for computing the maximum detour of P and an O(n) time
algorithm when the path is monotone. We conclude in Section 6.

3 The Lower Bound

In this section we show that computing the spanning ratio of a rectilinear path P in the
L1 plane has a lower bound Ω(n log n) in the algebraic computation tree model. The
proof follows an idea of Grüne et al’s presentation [10] at EuroCG’03 that has not yet
been submitted for publication.

The Integer Element Distinctness Problem is to decide whether n integers y1, y2, . . . , yn

are all distinct. It is known that this problem has a lower bound of Ω(n log n) in the al-
gebraic computation tree model [20]. We will show that we can transform an instance
y1, y2, . . . , yn of Integer Element Distinctness Problem into an instance P = (V, E) in
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O(n) time. Let ymax = max
1≤i≤n

yi and ymin = min
1≤i≤n

yi. If ymin is negative, we add |ymin| + 1

to every number to make all numbers positive. We set the vertex set V = {p4i−3 =

( 2i−2
2n , ŷ + i), p4i−2 = ( 2i−1

2n , ŷ + i), p4i−1 = ( 2i−1
2n , yi), p4i = ( 2i

2n , yi) | i = 1, 2, . . . , n}, where
ŷ = 3ymax+2n+1 (the reason will be shown later), and the edge set E = {e j = (p j, p j+1) |
j = 1, 2, . . . , 4n − 1}. Then P = (p1, p2, . . . , p4n) is a rectilinear path that is monotone
with respect to the x-axis. We say a vertex pi in P is a low vertex if its y-coordinate is
smaller than ŷ, and a high vertex otherwise.

p1 p2

p3 p4 p20

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

Figure 3-1 Transforming an instance of the integer element distinctness problem
into a rectilinear path.

Figure 3-1 is an example of transforming an instance (3, 2, 4, 3, 1) of Integer El-
ement Distinctness Problem into a rectilinear path. By substituting n = 5, i = 1 and
y1 = 3 into the formula, we have p1 = ( 2i−2

2n , ŷ + i) = (0, ŷ + 1), and p2, p3 and p4 are
( 1

10 , ŷ+1), ( 1
10 , 3) and ( 2

10 , 3), respectively. It is easy to see that the y-coordinates of high
vertices are nondecreasing from left to right, but the y-coordinates of low vertices vary
according to the values of yi’s.

Lemma 1. Let pi, pi+1, p j, p j+1 be four vertices in P, where pi and pi+1 have the same
y-coordinate, p j and p j+1 have the same y-coordinate, and i + 1 < j. We have

δP(pi, p j+1) ≤ δP(pi+1, p j+1) = δP(pi, p j) ≤ δP(pi+1, p j).

Proof. δP(pi, p j) =
dP(pi,p j)
dL1 (pi,p j)

=
|pi pi+1 |+dP(pi+1,p j)
|pi pi+1 |+dL1 (pi+1,p j)

≤ dP(pi+1,p j)
dL1 (pi+1,p j)

= δP(pi+1, p j).

δP(pi+1, p j+1) =
|p j p j+1 |+dP(pi+1,p j)
|p j p j+1 |+dL1 (pi+1,p j)

=
|pi pi+1 |+dP(pi+1,p j)
|pi pi+1 |+dL1 (pi+1,p j)

= δP(pi, p j).

δP(pi, p j+1) =
dP(pi,p j+1)
dL1 (pi,p j+1) =

|pi pi+1 |+dP(pi+1,p j+1)
|pi pi+1 |+dL1 (pi+1,p j+1) ≤

dP(pi+1,p j+1)
dL1 (pi+1,p j+1) = δP(pi+1, p j+1). �

Lemma 1 shows that for any four vertices in such a situation only (pi+1, p j) can
contribute to the spanning ratio. We call such a pair of vertices a candidate pair.

Lemma 2. If a candidate pair (pi, p j) have one low vertex and one high vertex, then
there exists another candidate pair of vertices, both are high vertices or low vertices,
such that their detour is larger than δP(pi, p j).

Proof. Without loss of generality, we assume that pi is to the left of p j, pi is a high
vertex, and p j is a low vertex. Let vertex pk be the next high vertex to the right of p j.
Since ŷ = 3ymax + 2n + 1 > ymax + n + 1, we have
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δP(pi, p j) =
dP(pi,p j)
dL1 (pi,p j)

≤ dP(pi,p j)
ŷ−ymax

<
dP(pi,p j)

n+1 ≤ dP(pi,p j)
dL1 (pi,pk) ≤ dP(pi,pk)

dL1 (pi,pk) = δP(pi, pk).

The case of pi being a low vertex and p j being a high vertex is similar. �

Lemma 3. If a candidate pair (pi, p j) are both high or both low vertices with different
y-coordinates, then δP(pi, p j) ≤ 4n

3 ( 1
2 + ŷ + n − ymin).

Proof. Without loss of generality, we assume that pi is to the left of p j. Let the distance
between pi and p j along the x-axis be 2m−1

2n .

δP(pi, p j) =
dP(pi,p j)
L1(pi,p j)

≤
2m−1

2n +2m(ŷ+n−ymin)
2m−1

2n +1
=

2− 1
m

2n +2(ŷ+n−ymin)
2− 1

m
2n + 1

m

≤
1
n +2(ŷ+n−ymin)

3
2n

≤ 4n
3 ( 1

2n + ŷ + n − ymin) ≤ 4n
3 ( 1

2 + ŷ + n − ymin)

Since L1(pi, p j) ≥ 2m−1
2n +1, dP(pi, p j) ≤ 2m−1

2n +2m(ŷ+n−ymin) and 2− 1
m

2n + 1
m ≥ 1

2n + 1
m ≥

1
2n + 1

n = 3
2n , we have δP(pi, p j) ≤ 4n

3 ( 1
2n + ŷ + n − ymin) ≤ 4n

3 ( 1
2 + ŷ + n − ymin). �

Lemma 4. If a candidate pair (pi, p j) are both low vertices with the same y-coordinate,
then δP(pi, p j) ≥ 2n(ŷ − ymax).

Proof. Let the distance between pi and p j along x-axis be 2m−1
2n . Then, δP(pi, p j) ≥

2m(ŷ−ymax)
2m−1

2n
=

2m(2nŷ−2nymax)
2m−1 ≥ 2n(ŷ − ymax). �

Combining the above lemmas together, we now show that this problem has a lower
bound of Ω(n log n).

Theorem 1. Computing the spanning ratio of a rectilinear path P in the L1 plane has
a lower bound of Ω(n log n) in the algebraic computation tree model, even if the given
rectilinear path is x-monotone.

Proof. By Lemma 2, the spanning ratio must occur at a candidate pair of two high or
two low vertices. Substituting ŷ = 3ymax + 2n + 1 into the formulas of Lemma 3 and
Lemma 4, we have

2n(ŷ − ymax) = 2n(2ymax + 2n + 1) = 2n( 2
3 (ŷ − 2n − 1) + 2n + 1)

= 2n( 2
3 ŷ + 2

3 n + 1
3 ) > 2n( 2

3 ŷ + 2
3 n + 1

3 ) − 4n
3 (ymin) = 4n

3 ( 1
2 + ŷ + n − ymin).

Therefore, if we choose ŷ = 3ymax+2n+1, then the spanning ratio δ(P) ≥ 2n(2ymax+

2n + 1) if and only if there exists a candidate pair of two low vertices with the same
y-coordinate. The existence of a candidate pair of two low vertices with the same y-
coordinate is equivalent to the existence of two numbers yi and y j (with i , j) of the
same value in the given instance of the Integer Element Distinctness Problem. �
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4 Computing the Spanning Ratio of a Rectilinear Path

In this section we compute the spanning ratio of a rectilinear path P in the L1 plane. We
define that a vertex pi = (pi.x, pi.y) is dominated by another vertex p j = (p j.x, p j.y) if
pi.x ≤ p j.x and pi.y ≤ p j.y, denoted by pi � p j. For a vertex pi in V , let p∗i be the vertex
in V such that δP(pi, p∗i ) = max{δP(pi, p j) | p j ∈ V}. We say that p∗i is the best partner
of pi in V . Thus if we know the best partner of each vertex, then it is easy to compute
the spanning ratio of P. It suffices to consider the detours from pi to the vertices to the
right of it, i.e., to find the maximum detour from pi to the set Pi = {p j | pi.x ≤ p j.x}.
But the size of each Pi could be O(n) and the time complexity might become O(n2)
if we find the best partner of each vertex pi in a brute force manner. In the following,
we give an O(n log2 n) time and O(n) space algorithm. We divide the set Pi into two
subsets: D+

i = {p j | pi � p j} and D−i = Pi \ D+
i . We denote the best partner of pi in D+

i
as p+

i and in D−i as p−i . We only focus on D+
i here; the case of D−i is similar. That is, we

only need to find the p+
i for each pi in D+

i . Without loss of generality, we assume that
all vertices in P are in the first quadrant.

To solve this problem, we transform the vertices of V from the L1 plane to the L2
plane as follows. We transform each vertex p j in V into a point q j = (q j.x, q j.y) =

(dL1 (o, p j), dP(p1, p j)) in R2 in a one-to-one manner, where o is the origin. For conve-
nience, we call the original L1 plane the primal plane and the transformed space the
dual plane. In other words, in the dual plane q j has as its x-coordinate the L1 distance
between the origin o and p j and as its y-coordinate the path length from p1 to p j. The
point set Q+

i = {q j | p j ∈ D+
i } in the dual plane corresponds to the point set D+

i in the
primal plane. Therefore, we have δP(pi, p+

i ) = max
q j∈Q+

i

|m(i, j)|, where m(i, j) =
q j.y−qi.y
q j.x−qi.x

.

Thus the spanning ratio δP(pi, p+
i ) occurs at either maximum m(i, j) or minimum m(i, j)

among all q j in Q+
i . This problem now is equivalent to finding the two tangent lines

from qi to the convex hull of Q+
i . Figure 4-1 shows an example. In Figure 4-1(a), pi

has the dominating set D+
i = {pa, pb, pc, pd, pe}. In Figure 4-1(b), we transform pi and

pa, pb, pc, pd, pe into the dual plane. The maximum and minimum values of m(i, j) can
be found by the two tangent lines from qi to the convex hull of Q+

i = {qa, qb, qc, qd, qe}.

(a)

s
s ss

s s
s

o >

∧

x

y p1
pa pb

pc

pi
pd

pe

(b)
>

∧

x

y

s
sss

s
s

´́
E
E
EE¡

qa qb

qcqi qd

qe

Figure 4-1 (a) A vertex pi and its D+
i = {pa, pb, pc, pd, pe}. (b) Finding δ(pi, p+

i ) in
the dual plane by the two tangent lines from qi to the convex hull of Q+

i .

Based on this transformation, if we can find D+
i for each pi, we can find p+

i for each
pi by making tangent queries from qi to the convex hull of Q+

i . We observe that the
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tangent query is decomposable. A query is called decomposable if the answer to the
query over the entire set can be obtained by combining the answers to the queries to a
suitable collection of subsets of the set. We will partition D+

i into log n subsets by the
divide-and-conquer method and make the tangent queries from qi to the convex hulls of
the corresponding subsets in the dual plane and choose the one with maximum slope.

Our divide-and-conquer approach works as follows. Let pm be the vertex in P such
that pm.x is the median of the x-coordinates of all vertices in P. We divide the set P
into two subsets: PL = {pi | pi.x ≤ pm.x} and PR = {p j | p j.x > pm.x}. We then sort
the vertices of PL and PR in descending y-coordinates respectively. We iterate on each
vertex in PL in descending y-coordinate order such that we can find its best partner
in PR. Then we solve the subproblems PL and PR recursively. While iterating on each
vertex in PL in descending y-coordinate order, assume that after iterating on the vertex
pi in PL we have maintained a subset D+

R = {pk | pk ∈ PR, pi.y ≤ pk.y} in the primal
plane and the convex hull of the corresponding subset Q+

R = {qk | pk ∈ D+
R} in the dual

plane. For the next iterating vertex p j in PL, we first insert into D+
R those vertices in

PR whose y-coordinates are between pi.y and p j.y and their corresponding points in the
dual plane into the convex hull of Q+

R respectively and then make a tangent query from
q j to the convex hull of Q+

R.
Preparata [16] proposed an optimal algorithm for updating the convex hull in O(log n)

time for the insertion only case. Hershberger and Suri [12] obtained an offline ver-
sion of dynamic convex hull that can process a sequence of n insertion, deletion, and
query instructions in total O(n log n) time and O(n) space. If we implement our convex
hull by either of the dynamic convex hull data structures, we can afford tangent query
or insertion in O(log n) time. Therefore, the total time complexity of our algorithm is
T (n) = 2T ( n

2 ) + O(n log n) = O(n log2 n).

Theorem 2. The spanning ratio of a rectilinear path in the L1 plane can be found in
O(n log2 n) time and O(n) space. �

5 Computing the Maximum Detour of a Rectilinear Path

In this section we compute the maximum detour of a rectilinear path P = (V, E) in the
L1 plane. The maximum detour can occur on any two distinct points in U =

⋃
e∈E e. In a

previous work, Grüne et al. [10] presented an O(n2) algorithm for finding the maximum
detour of a simple polygon P. There the detour between two points was defined as
the ratio of the minimum length of all connecting paths contained in P, divided by
the straight distance. They observed that linear time suffices for monotone rectilinear
polygons in L1. We also come to a linear time conclusion for monotone rectilinear paths;
but for arbitrary rectilinear paths, we obtain an upper bound of only O(n log2 n).

The following lemma is useful and will be used several times.

Lemma 5. For any three points p, q, r in U =
⋃

e∈E e with p � q and q � r, we have
δP(p, r) ≤ max{δP(p, q), δP(q, r)}.
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Proof. There are three cases to be considered, depending on which one of {p, q, r} lies
between the two others on P, see Figure 5-1: (a) dP(p, r) = dP(p, q) + dP(q, r); (b)
dP(p, q) = dP(p, r) + dP(r, q); (c) dP(q, r) = dP(q, p) + dP(p, r).

For case (a), we have δP(p, r) =
dP(p,r)
dL1 (p,r) =

dP(p,q)+dP(q,r)
dL1 (p,q)+dL1 (q,r) ≤ max{ dP(p,q)

dL1 (p,q) ,
dP(q,r)
dL1 (q,r) }

= max{δP(p, q), δP(q, r)}.
For case (b), we have δP(p, r) =

dP(p,r)
dL1 (p,r) ≤ dP(p,r)

dL1 (p,q) ≤ dP(p,q)
dL1 (p,q) = δP(p, q).

For case (c), we have δP(p, r) =
dP(p,r)
dL1 (p,r) ≤ dP(p,r)

dL1 (q,r) ≤ dP(q,r)
dL1 (q,r) = δP(q, r). �

(a)
s

s
s

p

q
r

(b)
s

s
s

p

q

r

(c)
s

s
s

p

q

r

Figure 5-1 (a) dP(p, r)=dP(p, q) + dP(q, r) (b) dP(p, q)=dP(p, r) + dP(r, q)

(c) dP(q, r)=dP(q, p) + dP(p, r)

First in Section 5.1, we give an O(n) time and O(n) space algorithm to compute the
maximum detour when the rectilinear path is monotone. We then present an O(n log2 n)
time and O(n) space algorithm for the general case in Section 5.2.

5.1 Monotone rectilinear paths

Let us assume that dP(p1, pi), for i = 2, 3, ..., n, has been computed in O(n) time. For
any two distinct points on P, if the open straight line segment connecting them has no
intersection with P, we say these two points are visible from each other; they form a
visible pair.

Lemma 6. At least one of the pairs of points on P contributing to the maximum detour
must be a visible pair, and these two points must have the same y-coordinate.

Proof. By Lemma 5, if p, q ∈ P and the open segment pq intersects P at r, then one of
the two detours δP(p, r) and δP(r, q) must be no less than δP(p, q). Thus one of the pairs
of points contributing to the maximum detour must be a visible pair.

For a visible pair of points p, q ∈ P, if p.y , q.y, then we will show that there exists
a pair of points such that their detour larger than δP(p, q). Without loss of generality, we
assume that the path on P between p and q is below the segment pq and p � q.

If there is a point r on the path between p and q such that p � r and r � q, we have
either δP(p, r) ≥ δP(p, q) or δP(r, q) ≥ δP(p, q) by Lemma 5. We then either replace
point p by point r if δP(r, q) ≥ δP(p, q) or replace point q by point r if δP(p, r) ≥
δP(p, q). If we repeat the above procedure on the path between p and q until there is no
point r on the path between p and q such that p � r and r � q, we can then move point
q downward to a point q′ such that q′.y = p.y, and we have δP(p, q′) ≥ δP(p, q). �
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Given the lemma above, which says that two points defining the maximum detour
must be visible from each other and have the same y-coordinate, we shall call such a
pair horizontally visible.

Lemma 7. For any horizontally visible pair on P contributing to the maximum detour,
at least one of these two points must be a vertex.

Proof. We will show that for a horizontally visible pair p, q ∈ P, if both p and q are not
a vertex, there exists a pair of points such that their detour larger than δP(p, q). Without
loss of generality, we assume that p is to the left of q and the path on P between p
and q is below pq. If we move p and q upward simultaneously while keeping their L1
distance the same, their detour δP(p, q) will increase as the path length from p to q on P
increases. Thus we can keep moving p and q upward until one of them coincides with
a vertex. �

Thus we can restrict our search of the candidate pairs of points to horizontally visi-
ble pairs, with a vertex in each pair. Thus the number of candidate pairs is no more than
the number of vertices. Figure 5-2 (a) shows an example of all the candidate pairs on
the path P. We use a ray-shooting method to find all the candidate pairs. We will shoot
rays from each vertex to a target point horizontally visible from the vertex. Thus we can
divide the valid rays into four types, according to the four types of vertices from which
we shoot the rays, i.e., top-right, bottom-right, top-left, and bottom-left corner vertices.

(a)

s
s s

s s
s s

s s
s s

s s

s
-

-

¾
¾ -

¾ -

¾

¾

(b)

r r
r r

r r
r r

r r
r r

r
-q1
-q2

-q3
q4 -q5

q6

Figure 5-2 (a) Find all candidate pairs by ray-shooting.
(b) Shoot rays horizontally to the right from top-right vertices.

We only discuss the top-right corner case, as others are similar. Figure 5-2 (b) shows
an example in which there are four rays shooting from four top-right corner vertices,
q1, q2, q3, and q5. We use a stack S to help calculate the detours of this type of candidate
pairs. We traverse path P from left to right. When we go downward and encounter a top-
right vertex, we push the vertex into S . For the example in Figure 5-2 (b), we push q1, q2
and q3 into S , respectively. When the path goes upwards and we encounter a vertex qi,
we pop the vertices lower than qi from S and compute the detours associated with the
horizontally visible pairs. For example in Figure 5-2 (b), when we encounter the vertex
q4, we pop q3 and compute the detour δP(q3, q) of the horizontally visible pairs (q3, q),
where q is the horizontal projection from q3 on the vertical edge containing q4. Since
a vertex can be pushed into and popped from S only once, the total time complexity
for finding the maximum detour in a monotone rectilinear path is O(n), and the space
complexity is obviously O(n).
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Theorem 3. The maximum detour of a n-vertex monotone rectilinear path in the L1
plane can be found in O(n) time and O(n) space. �

5.2 Non-Monotone Rectilinear path

Now we consider the case of a non-monotone rectilinear path P. The candidate pairs
contributing to the maximum detour can be restricted to the following two cases. It can
be proved similarly as in Lemmas 6 and 7.

Lemma 8. Among the pairs of points contributing the maximum detour, there is one
satisfies one of the following two properties: (1) it is a pair of visible vertices; (2) it is
either a horizontally visible pair of points (with the same y-coordinate) or a vertically
visible pair of points (with the same x-coordinate), and at least one of the two points
must be a vertex. �

We can use the algorithm shown in Section 4 to deal with case (1), which takes
O(n log2 n) time. For case (2), we need to do both vertical and horizontal ray-shooting
from V to P. The total number of rays is O(n). We roughly describe the algorithm below.
It can be done in O(n log n) time.

Consider shooting rays horizontally to the right from top-right and bottom-right
corner vertices. We first sort the vertical edges by their x-coordinates, and then use
a plane sweep method sweeping a vertical line from left to right. During the sweep,
we maintain a binary search tree which consists of active corner vertices. An active
corner vertex is one whose rightward ray has not yet been created. When scanning a
new edge e, those vertices in the binary search tree whose y-coordinates lie between the
y-coordinates of the two end vertices of e will shoot their rightward rays to e, creating
horizontally visible pairs of points. We then delete those vertices from the binary search
tree and insert the two end vertices of edge e, if they are top-right or bottom-right corner
vertices, into the binary search tree. Obviously, this algorithm takes time O(n log n). The
other types of rays, horizontally to the left, vertically upward and vertically downward,
can be handled in a similar way. Thus we can find all horizontally and vertically visible
pairs of points in O(n log n) time. Therefore, the theorem follows.

Theorem 4. The maximum detour of a n-vertex rectilinear path in the L1 plane can be
found in O(n log2 n) time and O(n) space. �

6 Conclusion

We have shown that the problem of computing the spanning ratio of a rectilinear path P
in the L1 plane has a lower bound of Ω(n log n) in the algebraic computation tree model
and we have given a deterministic O(n log2 n) time algorithm. We have also given a
deterministic O(n log2 n) time algorithm for computing the maximum detour of a recti-
linear path P in the L1 plane and have obtained an optimal O(n) time algorithm for the
monotone case.
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There is still a gap between the lower boundΩ(n log n) and upper O(n log2 n) for the
spanning ratio problem. How to bridge the gap will be of interest. As for the maximum
detour problem for non-monotone rectilinear paths, we have not been able to make any
use of the property that the maximum detour must be defined by a visible pair of points.
Whether one can get a more efficient algorithm exploiting this or any other property is
also of interest. Finally whether or not Ω(n log n) is a lower bound for computing the
maximum detour of a path remains open.
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