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Abstract

We consider a set of axis-parallel nonintersecting
strips in the plane. An observer starts to the left of
all strips and ends to the right, thus visiting all strips
in the given order. A strip is inspected as long as the
observer is inside the strip. How should the observer
move to inspect the set of strips?
Keywords: Motion planning, watchman routes

1 Introduction

In the last decades, routes from which an agent can
see every point in a given environment have drawn a
lot of attention (e.g., [3, 4, 5, 6]). Usually, the objec-
tive is to find a short route; either the shortest pos-
sible route (the optimum) or an approximation. In
this paper, we focus on another criterion for routes:
We want to minimize the time that a certain area
of the environment is not seen. Imagine a guard in
an art gallery whose objective is to be as vigilant as
possible and to minimize the time an object is un-
guarded. We restrict ourselves to a very simple kind
of environments—parallel strips in the plane. More
complicated environments are the subject of ongoing
research. In Section 2 we present notational conven-
tions and define an objective function which has to
be minimized. Then, in Section 3 we first prove some
structural properties of an optimal solution for the
Euclidean case. At the end we present an efficient
algorithm. The ideas can be adapted to the L1-case
which is mentioned in Section 4.

2 Preliminaries
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Figure 1: Visiting three strips in a given order.
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Let {S1, . . . , Sn} be a set of nonintersecting vertical
strips and S = (sx, sy) be a start point to the left of
all strips and T = (tx, ty) be an end point to the right
of all strips. W.l.o.g. we can assume that S is below
T (i.e., sy ≤ ty). Strip Si has width wi.

An inspection path, P , from S to T visits the strips
successively from left to right, see Fig. 1. For a given
path P let Pi denote the part of P within strip Si.
Let |Pi| denote the corresponding path length, and
last(P ) the last segment of P (i.e., from Sn to T ).

While P visits Si, the strip is entirely visible. The
performance of P for a single strip Si therefore is
given by Perf(P, Pi) := |P | −| Pi|. The performance
of the path P for all strips is given by the worst
performance achieved for a single strip. That is
Perf(P ) := maxi Perf(P, Pi). Finally, the task is to
find among all inspection paths the path that gives
the best performance for the given situation; that is,
an inspection path with minimal performance:
Perf := minP maxi Perf(P, Pi) .

This problem belongs to the class of LP-type prob-
lems [7], but the basis could have size n. Therefore,
we solve the problem directly. It may also be seen as
a Time and Space Problem (see, e.g., [2, 1]).

3 The Euclidean Case

In this section we first collect some properties of the
optimal solution and design an efficient algorithm.

3.1 Structural Properties

We can assume that the optimal inspection path is a
polygonal chain with straight line segments inside and
between the strips: If there are kinks or arcs inside or
outside the strips, we can optimize the inspection path
by straightening the corresponding parts.

Let us further assume that we have an inspection
path as depicted in Fig. 2. The first simple obser-
vation is that we can rearrange the set of strips in
any nonintersecting order and combine the elements
of the given path adequately by shifting the segments
horizontally without changing the path length.

Now, it is easy to see that an optimal solution has
the same slope between all strips. We rearrange the
strips such that they stick together and start from the
X-coordinate of the start point. The last part of the
solution should have no kinks as mentioned earlier.
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Figure 2: Rearranging strips and path yields the same
objective value. Thus, the optimal solution has the
same slope between all strips.
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Figure 3: An optimal solution: The first strips are
visited with |Pi| = d, every other strip with |Pi| > d.

Lemma 1 The optimal solution is a polygonal chain
without kinks between the strips or inside the strips.
The path has the same slope between all strips.

In the following, we assume that the strips are or-
dered by widths w1 ≤ w2 ≤ · · · ≤ wn, starting at
the X-coordinate of the start point sx, and lie side by
side (i.e., without overlaps or gaps), see Fig. 2(ii). For
ty = sy the optimal path is the horizontal connection
between S and T . Thus, we assume ty > sy.

Now, we show some structural properties of an opti-
mal solution. The optimal solution visits some strips
with the same value d = |Pi| until it finally moves
directly to the end point, see Fig. 3 for an example.

Lemma 2 In a setting as described earlier, the op-
timal path P visits the first k ≤ n strips with the
same distance d and then moves directly to the end-
point. That is, for i = 1, . . . , k we have |Pi| = d and
for i = k + 1, . . . , n we have |Pi| > d. The path is
monotonically increasing and convex with respect to
the segment ST .

Proof. Let P denote an optimal path for n strips.
First, we show that the path is monotonically in-

creasing. There is at least one segment, Pi, with
positive slope, because ty > sy. Let us assume—for
contradiction—that there is also a segment, Pj , with
negative slope. We rearrange the strips and the path
such that Pi immediately succeeds Pj , see Fig. 4(i).
Now, we can move the common point of Pj and Pi up-
wards. Both segments decrease and the performance
of P gets better. Thus, there is no segment with neg-
ative slope and P is monotonically increasing.

The performance of P is given by |Pk| := minj |Pj |.
Let k be the biggest index such that Pk is responsible
for the performance. By contradiction, we show that
for i < k there is no Pi with |Pi| > |Pk|. So let us as-
sume that |Pi| > |Pk| holds for i < k. We can assume
|Pk| = |Pi+1|. From wi ≤ wi+1 we conclude that the
path PiPi+1 makes a right turn. Because |Pi| > |Pk|
we can globally optimize the solution by moving the
connection point downward, see Fig. 4(ii). Although
Pi increases, the total path length decreases. Thus,
|Pi| = |Pk| for i = 1, . . . , k − 1. For i = k + 1, . . . , n
we have |Pi| > |Pk| by assumption.

Now, we show that there is no kink in the path
Pk+1Pk+2 · · ·Pn. As |Pj | > |Pk| and |Pj+1| > |Pk| we
can globally optimize the solution by moving the con-
nection point downwards or upwards, see Fig. 4(iii).
The path length decreases. Thus, Pk+1Pk+2 · · ·Pn is
a straight line segment.

Altogether, for i = k + 1, . . . , n we have |Pi| >
d. For i = 1, . . . , k we have |Pi| = d and the
part Pk+1Pk+2 · · ·Pnlast(P ) is a straight line segment.
Path P is monotonically increasing. The first part
of P makes only right turns as already seen. The
last part is a line segment. The concatenation of Pk

and Pk+1Pk+2 · · ·Pn also makes a right turn; other-
wise, we can again improve the performance because
Pk+1 > Pk. Altogether, P is convex w.r.t. ST . !

In the following, we show that we can compute
the optimal solution incrementally; that is, we succes-
sively add new strips and consider the corresponding
optimal solutions.

Let S1, S2, . . . , Sn be a set of strips and let S and
T be fixed. Let P i denote the optimal solution for
the first i strips. For increasing i the parameter k of
Lemma 2 is strictly increasing until it remains fixed:

(iii)(i) (ii)

Pi Pi

Pk+1

Pk+2

Pk+3

Pk

Pi

Pj Pj

Figure 4: Global optimization by local changes: The
connection point can be moved (i) upwards, (ii) down-
wards or (iii) upwards or downwards.
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holds and d fulfills |Qj | = d with horizontal last(Q).

Lemma 3 For P i either the index k is equal to i or
P i is already given by P i−1. If P i is identical to P i−1,
also P j is identical to P i−1 for j = i + 1, . . . , n.

We postpone the complete proof of Lemma 3 and
first show how to adapt a solution P i to a solution
P i+1. Let us assume that we have a solution P i and
that k in the sense of Lemma 2 is equal to i. That is,
the first i strips are visited with the same distance d.
If |P i

i+1| < d holds, the solution P i is not optimal for
i+1 strips. Therefore we want to adapt P i. Lemma 3
states that it migth be useful to search for a solution
with identical path length in k = i + 1 strips.

We will now show that this solution can be com-
puted efficiently. The task is to compute the path
P i+1 between two extreme solutions, R and Q, as fol-
lows: Let R be the path with path lengths |Rj | = wi+1

for j = 1, . . . , i+1 and let Q be the path with |Qj | = d
for j = 1, . . . , i + 1, where the last segment, last(Q),
is horizontal. Starting from d = wi+1, let P i+1(d) de-
note the unique path that starts with |P i+1

j | = d for
j = 1, . . . , i+1 and ends with a straight line segment.

The performance of P i+1(d) is given by the func-
tion fi+1(d) := di+|last(P i+1(d))|. Note that we can
express |last(P j(d))| in terms of d: |last(P i+1(d))| =√

X2+
(
ty−

∑i+1
j=1

√
d2 − w2

j

)2
with X := tx−

i+1∑
j=1

wj .

By simple analysis, we can show that fi+1(d) has a
unique minimum in d:

Lemma 4 The function fi+1(d) has exactly one min-
imum for d ∈ [wi+1, δ], where δ is the solution of

ty −
∑i+1

j=1

√
δ2 − w2

j = 0 (i.e., the last segment is

horizontal).

Now, it is easy to successively compute the mini-
mum of fi+1(d) for i = 0, . . . , n− 1. For example, we
can apply numerical methods for getting a solution of
f ′i+1(d) = 0. In the following we assume that we can
compute this minimum in time O(i).

Using Lemma 4 we can now prove Lemma 3.
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Figure 6: Between P i+1 and P j there has to be a
solution with P (d) which is better than P i+1.

Proof of Lemma 3. Let us assume that we have
a solution P i and let |P i

k| = d, where k denotes the
index in the sense of Lemma 2. We use this solution
for the first i + 1 strips. If |P i

i+1| ≥ d holds, the
given solution is also optimal for i + 1 strips because
the overall performance remains the same: The last
segment, last(P i), of P i is a line segment with positive
slope. Further, wj ≥ wj−1 holds. Thus, P i is the
overall optimum; that is, we can apply P i to all n
strips and |P i

j | ≥ d holds for j = i + 1, i + 2, n.
This means that, if we have found a solution P i

with |P i
i+1| ≥| P i

k| where k denotes the index from
Lemma 2, then we are done for all strips.

It remains to show that the index k is strictly in-
creasing until it is finally fixed. From the considera-
tion above we already conclude that there is only one
strip, where k does not increase. If k does not increase
from i to i+1 we have k < i+1 and |P i+1

k | < |P i+1
i+1 |.

Thus, P i+1 is the overall optimum and k is fixed.
Finally, we show that indeed k can never decrease.

Let us assume from " = 1 to " = i we have a solution
P ! for " strips and k = " for every P !. Let us further
assume that for i + 1 strips the solution P i+1 comes
along with k = j < i. We compare the two solutions
P i+1 (with k = j < i and |P i+1

j | =: di+1) and P j

(with k = j and |P j
j | =: dj), see Fig. 6.

As P j is optimal for j strips but not for j + 1, we
have |P j

j+1| < dj . On the other hand P i+1 is optimal
for i+1 strips; thus |P i+1

j+1 | > di+1 holds; see Lemma 2.
Now for a parameter d consider a monotone path

P (d) that starts from S, has equal path length d in
the first j strips and then moves toward T . While
d increases, the slope of the last segment strictly
decreases. Therefore, the path length |P (d)j+1| is
strictly decreasing in d. This means that dj > di+1

and P j runs above P i+1. The path P (d) changes con-
tinuously, therefore in [di+1, dj ] there has to be a value
d′ such that |P (d′)j+1| is equal to d′. The path P (d′)
runs between P i+1 and P j . Obviously, d′ < P (d′)l

for l = j + 1, . . . , n holds.
We show that P (d′) is better than P i+1. This is

a direct consequence of Lemma 4. The value of P (d)
strictly decreases from d = di+1 to the unique mini-
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mum d = dj . Altogether, P i+1 is not optimal. !
The result of Lemma 3 now suggests a method for

computing the optimal path efficiently. Starting from
j = 1 we compute an optimal path for the first j
strips. Let P j denote this path. If |P j

j+1| > |P j
j |

holds we are done. Otherwise, we have to compute
P j+1 for j + 1 strips and so on.

3.2 Algorithm and its Analysis

Theorem 5 For a set of n axis-aligned strips the op-
timal inspection path can be computed in O(n log n)
time and linear space.

Proof. First, we sort the strips by width which takes
O(n log n) time. Then we apply binary search. That
is, in a first step we compute a solution with respect
to j = %n

2 & strips. This can be done by computing the
best value for fj(d) starting from wj = d until the last
segment is horizontal, see Lemma 4. Let dj denote the
optimal value for j strips and P j the optimal path.

Now, we have to determine whether the optimal
path visits i ≤ j or i > j strips with the same distance
di. If dj > wj+1, we have to take into account at least
the strip Sj+1. Therefore, i > j holds and we proceed
recursively with the interval [j, n]. If dj ≤ xj+1 we
proceed with the interval [1, j]. Therefore we will find
the optimum in log n steps. Computing the minimum
of fj(d) for index j takes O(j) time. !

For a lower bound construction we can simply as-
sume that the input of an algorithm is given by an un-
sorted set of strips. The X-coordinates of the strip’s
left boundaries and their widths describe the setting.
The solution is given by a polygonal chain from left
to right representing the order of the left boundaries.
Thus, sorting a set of n elements can be reduced to
the given problem.

Theorem 6 For a set of n axis-aligned unsorted
strips the optimal inspection path is computed in
Θ(n log n) time and Θ(n) space.

4 The L1-Case

Fortunately, if we measure the distance by the L1 met-
ric the structural properties are equivalent. Comput-
ing the optimal path becomes much easier.

Note that the path segments between the strips
have to be horizontal. We have to distribute the verti-
cal distance from S to T among a subset of the strips.
Again we sort the strips by their widths and rearrange
the scenario. Fig. 7 shows an example of an optimal
L1-path after rearrangement.

Theorem 7 The optimal L1-path P visits the first
k ≤ n strips with the same L1-distance d and then
moves horizontally to the end point T . For i =

P5
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T
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Figure 7: An optimal solution in the L1-case after
rearrangement. The first three strips are visited with
the same value d, for all other strips |Pi| > d holds.
The path is horizontal between strips.

1, . . . , k we have |Pi| = d and for i = k + 1, . . . , n

we have wi > d. Additionally,
∑k

i=1 |Pi| = ty holds.
If the number of strips, n, increases, the index k in-
creases until it remains fixed. The optimal path can
be computed in Θ(n log n) time and Θ(n) space.

An algorithm for the L1 problem is given as follows.
First, we sort the strips by their widths. Then starting
from i = 1 we distribute ty +

∑i
j=1 wj among i strips.

For an optimal path, P i, for i strips we have |P i
j | =

1
i (ty +

∑i
j=1 wj) for j = 1, . . . , i. If |P i

i | < wi+1 this
path is also optimal for i+1 (and n) strips. For |P i

i | >
wi+1 we distribute ty +

∑i+1
j=1 wj among i + 1 strips;

that is, |P i+1
j | = 1

i+1 (ty+
∑i+1

j=1 wj) for j = 1, . . . , i+1.
Altogether, if the strips are given by ordered

widths, the algorithm runs in Θ(n) time and space.
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