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Abstract

We consider the problem of finding a door along a wall with a blind
robot that neither knows the distance to the door nor the direction to-
wards of the door. This problem can be solved with the well-known
doubling strategy yielding an optimal competitive factor of 9 with the
assumption that the robot does not make any errors during its move-
ments. We study the case that the robot’s movement is erroneous. In
this case the doubling strategy is no longer optimal. We present opti-
mal competitive strategies that take the error assumption into account.
The analysis technique can be applied to different error models.

Keywords: Online algorithm, Online motion planning, competitive
analysis, ray search, errors.

1 Introduction

Motion planning in unknown environments is theoretically well-understood
and also practically solved in many settings. During the last decade many
different objectives where discussed under several robot models. For a gen-
eral overview of theoretical online motion planning problems and its analysis
see the surveys [4, 22, 13, 24, 24|

Theoretical correctness results and performance guarantees often suffer
from idealistic assumptions so that in the worst case a correct implementa-
tion is impossible. On the other hand practioners analyze correctness results
and performance guarantees mainly statistically or empirically. Therefore
it is useful to investigate, how theoretic online algorithms with idealistic as-
sumptions behave, if those assumptions cannot be fulfilled. More precisely,
can we incorporate assumptions of errors in sensors and motion directly into
the theoretical sound analysis? We already successfully considered the be-
haviour of the well-known pledge algorithm, see e.g. Abelson and diSessa
[1], and Hemmerling [11], in the presence of errors [16]. It has been proven
that a compass with an error of 7/2 is sufficient to leave an unknown maze
with a strategy that makes use of counting turning angles.

The task of finding a point on a line by a blind agent without knowing
the location of the goal was considered by Gal [7, 8, 2| and independently
reconsidered by Baeza-Yates et al. [3]. Both approaches lead to the so called
doubling strategy, which is a basic paradigma for searching algorithms, e. g.
searching for a point on m rays, see [7], or approximating the optimal search
path, see [6].

Searching on the line was generalized to searching on m concurrent rays
starting from a single source, see [3, 7. Many other variants were discussed
since then, for example m-ray searching with restricted distance (Hipke et al.
[12], Langetepe [20], Schuierer [21]), m-ray searching with additional turn
costs (Demaine et al. [5]), parallel m-ray searching (Hammar et al. [10]) or



randomized searching (Kao et al. [18]). Furthermore, some of the problems
were again rediscovered by Jaillet et al. [14].

In this paper we investigate how an error in the movement influences
the correctness and the corresponding competitive factor of a strategy. The
error range, denoted by a parameter J, may be known or unknown to the
strategy.

The paper is organized as follows. In Section 2 we recapitulate some
details on m-ray searching and its analysis. The error model is introduced
in Section 2.1. In Section 3 we discuss the case where the strategy is not
aware of errors, therefore we analyze the standard doubling strategy showing
correctness and performance results. The main result is presented in Sec-
tion 4. We can prove that the optimal competitive strategy that searches

2
for a goal on a line achieves a factor of 1 4 8 (%) if the error range ¢ is

known. Fortunately, our analysis technique works for different error mod-
els and is generic in this sense. Finally, we consider the m-ray searching
in Section 5. For a summary of the results and factors see Section 6. A
preliminary version of this report appeared in [17].

2 The standard problem

The task is to find a door in a wall, respectively a point, ¢, on a line. The
robot does not know whether ¢ is located left hand or right hand to its start
position, s, nor does it know the distance from s to ¢t. Baeza-Yates et al.
[3] describe a strategy for solving this problem by using a function f. f(4)
denotes the distance the robot walks in the i-th iteration. If 7 is even, the
robot moves f(i) steps from the start to the right and f(7) steps back; if 7 is
odd, the robot moves to the left. It is assumed that the movement is correct,
so after moving f(i) steps from the start point to the right and moving f(7)
steps to the left, the robot has reached the start point. Note, that this does
not hold, if there are errors in the movement, see for example Figure 2.

The competitive analysis compares the cost of a strategy to the cost of
an optimal strategy that knows the whole environment. In our case these
cost is given by the distance, d, to the goal. With the assumption d > 1 a
search strategy that generates a path of length |moy| is called C-competitive
if for all possible scenarios @ < C holds'. It was shown by Baeza-Yates
et al. [3] that the strategy f(i) = 2° yields a competitive factor of 9 and that
no other strategy will be able to achieve a smaller factor.

The problem was extended to m concurrent rays. It was shown by Gal
[8] that w.l.o.g. a strategy visits the rays in a cyclic order and with increasing
distances f(i) < f(i +1). The optimal competitive factor is given by 1 +

1For d > 1 the constant that usually appears in the definition of the competitive factor
can be omitted see for example [20].



2—r( m;nm_ and an optimal strategy is defined by f(i) = (%)Za see [3, 7]

m—1

2.1 Modelling the error

The robot moves straight line segments of a certain length from the start
point alternately to the left and to the right. Every movement can be
errorneous, which causes the robot to move more or less far than expected.
However, we require that the robots error per unit is within a certain error
bound, §. More precisely, let f denote the length of a movement required
by the strategy—the nominal value— and let ¢ denote the actually covered
distance, then we require that £ € [(1—0)f, (1+0)f] holds for § € [0, 1], i.e.
the robot moves at least (1 —9)f and at most (1+ ) f. This is a reasonable
error model, since the actually covered distance is in a symmetrical range
around the nominal value. Another commonly used method is to require
le [ﬁf, (140") f] for &' > 0. This leads to an unsymmetrical range around
the desired value, but does not restrict the upper bound for the error range.
Since both error models may be of practical interest, we give results for both
models, although we give full proofs only for the first model. We call the
first model percentual error, the second model standard multiplicative error.

3 Disregarding the error

In this section, we assume that the robot is not aware of making any errors.
Thus, the optimal doubling strategy presented above seems to be the best
choice for the robot. In the following we will analyze the success and worst
case efficiency of this strategy with respect to the unknown 4.
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Figure 1: The i-th iteration consists of two separate movements, E;" and £} .
Both may be of different length, causing a drift. The vertical path segments
are to highlight the single iterations, the robot moves on horizontal segments
only.

Since the errors in the movements away from the door and back towards



the door may be different, the robot may not return to the start point, s,
between two interations, see Figure 1. Even worse, the start point of every
iteration may continuously drift away from the original start point. Let Ej
be the length of the movement to the right in the i-th step and ¢;” be the
covered distance to the left. Now, the deviation from the start point after
the k-th iteration step, the drift Ay, is

k

Ap=> (7 —1f).

=1

If the drift is greater than zero, the start point sx,1 of the iteration k41
is located left to the original start point, if it is smaller than zero, sgy1 is
right hand to s. Note, that £ equals £; in the error-free case. We will show
that the worst case is achieved, if the robot’s drift to the left is maximal.
The length of the path 7 after k iterations is

k

el =D (6 + ).

i=1

Theorem 1 In the percentual error model [(1—0)f, (1+40)f] with 6 € [0,1]
the robot will find the door with the doubling strategy f(i) = 2¢, if the error
d is not greater than % The generated path is never longer than

times the shortest path to the door?.

Proof. We assume that finally the goal is found on the right side. The other
case is handled analogously. For the competitive setting it is the worst, if
the door is hit in the iteration step 25 + 2 to the right side, but located just
a little bit further away than the rightmost point that was reached in the
preceeding iteration step 2j. In other words, another full iteration to the
left has to be done and the shortest distance to the goal is minimal in the
current situation. Additionally we have to consider the case where the goal
is exactly one step away from the start. We discuss this case at the end.
We want the door to be located closely behind the rightmost point visited
in the iteration step 2j. Considering the drift Ag;_;, the distance from the
start point s to the door is

251
_ ot -t
d=1{;; — Z(fl —0)+e.
i=1
2More precisely, the factor is 1 + 8%}15 for an arbitrary small e, which is crucial for

the case § = %, but neglectable in all other cases. For convenience we omit the ¢ in this
and the following theorems.
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Figure 2: In the worst case, the start point of every iteration drifts away
from the door.

The total path length is the sum of the covered distances up to the start
point of the last iteration, the distance from this point to the original start
point s (i. e. the overall drift), and the distance to the door:

2j+1 2j+1
|7T0n1|:2(€i_+€j)+ Z(f;—ﬁj)—l—d.
i=1 i=1

With this we get the worst case ratio

27+1 —
‘7Tonl| 14 Zzi—{ (%z‘ ) _
d G =S (0 — ) +e

2

(1)

We can see that this ratio achieves its maximum if we maximize every
07, i.e. if we set £; to (1 + 6)2% in this error model. Now we only have
to fix K;-" in order to maximize the ratio. Obviously, the denominator gets
its smallest value if every €i+ is as small as possible, therefore we set €i+ to
(1—6) 2%, So the worst case is achieved if every step to the right is too short
and every step to left is too long, yielding a maximal drift to the left and
away from the door, see Figure 23. Altogether, we get

Tow SAe) . 21+ 3
d B +€+ _ Z2j—1(€—_€+) + =1+ 1-6)922 — 255 %~ 1ai
2j i=1 & =4 € ( ) >it1 +e
(1+6)(29+2 — 2)
= 142 - 2
T30 1401 - 2)
1446
< 1+81%%. (3)

3The vertical path segments are to highlight the single iteration steps, the robot moves
only on horizontal segments.



For the case that the goal is exactly one step away from the start we achieve
the worst case factor 1+ 4(1+6) which is Smaller than the above worst case.

Obviously, we have to require that § < & 5 holds. Otherwise, in the worst
case the distance (1 — 35) 2% + 45 from the start point does not exceed the
point 49 and we will not hit any goal farther away. O

Proposition 1 In the standard multiplicative error model [ﬁf, (149)f]
for & > 0, the doubling strateqy always finds the goal with a competitive

factor 0f1+82(1(%g if § < /2 —1 holds.

Proof. We exactly follow the proof of Theorem 1. The worst case ratio is
given by Equation 1 and now we maximize this value by ¢;” = 2*(1 +6) and

¢t =

2 3+ Using these settings in (3) yields

a+s
|Ton| 2 X1 4 4) 2
d s 1+ 25 21 1 §— 1 i
1+62 — 2= (1+ _5> 2 te
2(14+46 —
. (1+9)° (4~ )

22
1—(1+02-1) (1- &) + =52
4 —

2(1+6)? (4— 57)
= 1+ e (119)
2— (140 + (FH((1+0)2-1)) + =5
(1+0)?
1 R S
< M8 s
and we achieve a worst case ratio of 1 + 8 %. For the denominator
2 —(1+6)? <0 holds iff § > /2 — 1. m

4 The optimal strategy for known error range

One might wonder whether there is a strategy which takes the error ¢ into
account and yields a competitive factor smaller than the worst case factor of
the doubling strategy. Intuitively this seems to be impossible, because the
doubling strategy is optimal in the error-free case. We are able to show that

there is a strategy that achieves a factor of 1 + 8 (i*g) . This is smaller
than 1 + 811+365 for all & < 1.

Theorem 2 In the presence of an error up to § in the percentual error
model [(1 —0)f, (1 +9)f] with § € [0,1], there is a strategy that meets every

- ” 1462
goal and achieves a competitive factor of 1+ 8 (ﬂ) .



Proof. We are able to design a strategy as in the error-free case. We can
assume that a strategy F is given by a sequence of non-negative values?,
f1, f2, f3, ..., denoting the nominal values required by the strategy, i.e. in
the i-th step the strategy wants the robot to move a distance of f; to a
specified direction— to the right, if 7 is even and to left if 7 is odd—and to
return to the start point with a movement of f; to the opposite direction.
Remark, that every reasonable strategy can be described in this way.

As above, let E;F and ¢; denote the length of a movement to the right
and to the left in the i-th step, respectively. In the proof of Theorem 1 we
showed that every online strategy will achieve a worst case ratio of

|7ronl‘ 14 212]—11—1(26 )
d o N2 gt ’
27 Zz:l ( 1 % )+8

which achieves its maximum if every step towards the door is as short as
possible and every step in the opposite direction is as long as possible, i. e.
07 = (1+9) f; and ¢ = (1 —6) fi. This yields

2j+1 o
—|”2“1‘ —1+2(1+96) it e (4)
( )f2] —20 Zz 1 Ji

For a fixed d, 1 and 2(1+9) are constant, and it is sufficient to find a strategy
that minimizes

i
( )fn_262 fz

and G (g 6)(F) := % where F' denotes the strategy f1, fa, f3,... and G(q ) (F)
refers to the worst case after the first iteration step. Note, that we assumed
that the goal is at least one step away from the start®.

By simple analysis we found out that a strategy f; = a! asymptotically
minimizes G, 5)(F) if a = 2 ii_g holds. In this case we have

G(n,5) (F) =

if n>1 (5)

n+1i
oG

(o2 (220)" pasq g (0P

which altogether gives 1+ 8 (ﬁg) for the competitive ratio. Note, that

fi = (2 }—fg) is a reasonable strategy, although handicapped by the error

4In the following we use f; instead of f (7) to omit parenthesis in the equations.
5 Alternatively, we can assume that the cost in the start situation is subsumed by an
additive constant in the definition of the competitive factor.



it monotonically increases the distance to the start which is never smaller
than the denominator in (4)

n—1
1 1+0\"
1-— -2 = ———= | (1 —0)(1 2 —— 46(1 .
(=0 =23 fi= gy (=904 (2775) 4001 49))
Thus, every goal point will be reached. O

We want to show that the given factor is optimal. As we have seen in
the proof of Theorem 2 there is a constant upper bound of G, 5 (F) that
depends on §. Now C(F)6) := sup,, G, 5)(F') defines the competitive value
of a strategy F', and for every fixed ¢ there will be a strategy F™* that yields
Cy = infr C(F,J). In the following we want to show that there is always a
strategy F'* that achieves Cj exactly in every step, that is G, 5 (F") = C§
for n > 1. For example, for 6 = 0 the strategy f; = (i + 1)2' exactly yields
the factor 9 in every step. Note, that up to now only the existence of Cf§
is known. The idea of using equality was mentioned in [19] and used for
a finite strategy in [21]. We give a formal proof for infinite strategies with
errors.

Lemma 3 In the presence of an error up to § in the percentual error model
[(1=0)f, (1 +9)f] with 6 € [0,1], there is always an optimal strateqy F™*
that achieves the optimal (sub)factor C§ exactly for all G, 5 (F™), that is
Gng) (F*) = C5 forn > 1.

Proof. Let F' be a C§ competitive strategy. We can assume that F' is
strictly positive. We will show that for all n > 1 there is always a strategy
F' that fulfills G, 5)(F") = C5 for all 1 < k < n, by successively adjusting
F adequately.

First, note that G, (F) is decreasing in f,. The value (1 —6)f,
— 29 Z?:_ll fi describes the distance to the start. We can assume that
(1 —0)fn — 2677 fi > 0 holds, otherwise the strategy does not increase
the distance to the start in this step and there is a better strategy for the
worst-case. Now G, 5)(F) equals a function C{c ’}:fB in f, with A, B,C >0
and Cf,, — B > 0. The function CJ_C ’}::43 is positive and strictly decreasing
for C'f, — B > 0. The other way round, the function goes to infinity if f,
decreases towards f,, = g. Altogether, if we decrease f,, adequately we can
increase (i(;, 5)(F") continously to whatever we want.

Additionally, G, 5)(F) is increasing in f, for all k # n. For k <n —1
G r,s)(F) is not affected by f,. For k = n—1 the distance f, appears
only in the nominator of Gy 5 (F') which increases if f, grows. For k > n
if f, grows, the denominator shrinks (it has the coefficient —24) and the
nominator increases. The other way round, if f,, decreases, G(k#;)(F ) is
decreasing in f,, for all k £ n. Altogether, if we decrease f,, we will decrease

all Gy, 5)(F) for k # n.




As indicated above let I’ be a strictly positive C§ competitive strat-
egy. By induction over n > 1, we will show that we can decrease F' to a
strictly positive strategy F' which fulfills G 5 (F') = C5 for all 1 <k < n.
Additionally, F’ equals F for all f; and [ > n + 1.

For n = 1 let us assume that G(1 5)(F') <= C§ holds, otherwise we are
done. By the argumentation above we will decrease f; by a small value
to fi = fi1 — e such that G 45)(F) = Cj holds. All other G ) (F) with
k # 1 will decrease, and the new strategy is still C§ competitive. Since fo
is strictly positive, f{ has to be strictly positive.

For the induction step, we assume that we decrease F' to a strictly pos-
itive strategy F” such that G5 (F') = Cj for all 1 <k < n. F' equals F
for all fy and I > n + 1. Now let G(,41,6)(F") < C§, otherwise we are done.
By the argumentation above we can decrease fp11 by € to f), .1 = fuy1 —€
such that G415 (F') = Cj holds. With the considerations above we know
that G(j5)(F") decreases for k # n. Since fy, 1o is strictly positive, f;,; has
to be strictly positive.

Unfortunately, at least G, 5)(F") < C holds and we have to apply the
induction hypothesis again. We decrease F’ to F" such that G, 5)(F") = C;
holds for all 1 < k < n. Again I is strictly positive. Now in turn we will
have G(,41,6)(F") < C§ and we start the procedure again by decreasing
fr+1 adequately. For convenience we denote F" by F' again.

Altogether, for every f/ with 1 <1 <n+ 1 in the above process we will
have a strictly decreasing sequence which will not decrease towards zero.
Therefore every f; runs toward a unique positive limit. For the limit values
we will have Gy, 5)(F') = Cj for 1 <k < n + 1 which finishes the induction
and the proof. O

Fortunately, we can build a recurrence for the optimal strategy F*
with G(n’(g)(F*) = C§ for n > 3. From G(n—l,&)(F*) = G(n_2’5)(F*) =
C; we conclude Y, fF = Cf ((1 SO 2002 f) and Y1) fr =
C; ((1 o), =20 ) Subtracting both yields for all n > 3

frn=C5(1=0)fn_1 —C5(1+9)fr_s (7)

Theorem 4 In the presence of an error up to § in the percentual error
model [(1 —0)f,(1+9)f] with § € [0, 1], there is no competitive strategy for
2
searching a point on a line that yields a factor smaller than 1+ 8 G—*_‘g) .
Proof. We solve the recurrence Equation 7 using methods described in
Graham et. al. [9]. The characteristic polynom of recurrence Equation 7 is
given by
X2 - Cy(1=8)X +Cr(1+9), (8)

which has the roots

AN = % ((1 —8)CF /0y (C31—8)2 — 41+ 5))) (9)

9



where \ denotes the conjugate of . Now, the recurrence is given in the
closed form ff = a\" 4+ @\" = 2Re(a\") where Re(w) denotes the real
part, ¢, of a complex number w = ¢ + di and a and @ are determined by
the equations @ +@ = f; and a\ + @\ = fo, and in turn by the starting
values f1 and fo. If we represent complex numbers by points in the plane,
multiplication of two numbers entails adding up the corresponding angles
they form with the positive X-axis. If the radiant C§ (C£(1 — §)? — 4(1 +9))
of X is negative, A is not real and its angle is not equal to 0. Consequently,
in this case there exists a smallest natural number s such that a)\® lies in
the left halfplane {X < 0}, so that f; becomes negative. The roots of the

radiant are 0 and 4 ((1+5))2 which shows that f,; gets negative if C§ < 4—((11j£)2

holds. The optimal strategy I with G, 5)(F™) = Cj has to be positive

therefore the overall competitive factor has to be at least 1+8 (H‘s) which
exactly matches the factor of the strategy described in Theorem 2. a

The proof also holds for § = 0 which gives another proof of the factor 9.
Thus, line search with errors is generalized adequately.

Proposition 2 In the presence of an error up to § in the standard mul-
tiplicative error model [(l—ig)f, (14 8)f] for 6 > 0 there is a competitive

strategy that always meets the goal and achieves a factor of 1+ 8(1 + §)%.
There is no strategy that achieves a better competitive factor.

Proof. We follow the lines of Theorem 2, Lemma 3 and Theorem 4. In
the standard multiplicative error model, Equation Equation 4 in the proof
of Theorem 2 reads

241 4
ol _ 1 4 911 6)2 Zizt Ji
d foj =02 +0)X7L fite

and it suffices to consider the functionals (compare to Equation 5)

Zn—i—l

Analogously, the best doubling strategy f; = a' can be found by simple
analysis which gives o = 2(1 + §)2. The corresponding factor Gns)(F) <
4 (1 + 6)? can be computed as shown in (6) which gives an overall factor of
1+ 8(1 +6)* for the strategy f; = (2(1 + §)?)".

The strategy proceeds in every iteration step at least by

Gns)(F) =

fn a  §(2+46) 2
“A, =

1446 1—1-5 1406 z;

a"  §(246) a"-—a

146 1+6 a—1

10



(1446 +25%)a™ —6(2+8)a”+6(2+0)a
(14 0)(1 + 49 + 262)
(14+20+8%)a”+6(2+0)
A1 o)(1145 122 0 'ore=
and the strategy will reach every goal.
It remains to show that the given strategy is optimal. Lemma 3 also holds

for the multiplicative error model. With the same techniques we adapt a
given strategy such that the optimal factor holds in every step. the corre-

sponding recurrence of an optimal strategy, see Equation 7, is now given
by

Fov1 = Cifroi = C3(146)%f .
We consider the characteristic polynom which is X2 — C;X + C}(1 + 6)2,
see (8). The polynom has the roots

AN % (oj; N T 5)2)>

Now with the same arguments as in the proof of Theorem 4 the radiant is
non-negative for C§ > 4(1+4§)? and the competitive factor has to be at least
1+8(1+06)% m

5 Error afflicted searching on m rays

The robot is located at the common endpoint of m infinite rays. The target
is located on one of the rays, but—as above—the robot neither knows the
ray containing the target nor the distance to the target. It was shown by
Gal [7] that w.l.o.g. one can visit the rays in a cyclic order and with increasing
depth. Strategies with this property are called periodic and monotone. More
precisely, the values f; of a strategy F' denote the depth of a search in the
i-th step. Further, f; and f;1,, visit the same ray, and f; < fi1, holds. An

3
m

m—1

In the error afflicted setting, the start point of every iteration cannot
drift away, since the start point is the only point where all rays meet and the
robot has to recognize this point. Otherwise we can not guarantee that all
rays are visited. Let us first assume that the error § is known. Surprisingly,
it will turn out that we do not have to distinguish whether § is known or

unknown to the strategy.

optimal strategy is defined by f; = (

Theorem 5 Assume that an error afflicted robot with error range 6 in the
percentual error model is given. Searching for a target located on one of m
rays using a monotone and periodic strateqy is competitive with an optimal

factor of
349 1+ ( m™m 1)
1-6 \(m—1)m-1

11



foré < %

Proof. A periodic strategy F' with nominal values f1, f2, f3,. .. is monotone
if (1—9)fx > (1 +6)fr—m holds. Now let ¢; denote the distance covered
by the error afflicted agent in the step 7. In analogy to the line case, we
achieve the worst case, if the target is slightly missed in step k, but hit in
step k + m. This yields

|7Tonl| — 14+ 2Zf:+1mil gl )
d b, + €

This ratio achieves its maximum for F', if we maximize every ¢;,i # k
and take a worst case value for ¢;. Therefore we set ¢ := (1 — 3)fx and
b= (1+49)fi,it # k for B € [—0,0]. For convenience we ignore ¢ from now
on. Weadd 2(1+06—(1-0))fk —2(1+d— (1 —1))fr) = 0 to the sum and
obtain

‘Wonl| o 1+5_(1_5) 1+46 Ef:{n_lfz
] = 1-2 -3 +21—ﬂ A (10)
_ 1490 s
= 3+21—B< A 1).

k+m—1 .
The functionals G(F) := % are identical to the functionals consid-
ered in the error-free m-ray search. From these results we know that the

m m

strategy f; = (m)z gives the optimal upper bound G (F') < (mﬂm’ see

[3, 7]. Now the adversary has the chance to maximize 3+2 % (# - 1)
over (8 which obviously gives 8 = § Altogether, the factor and the optimal-
ity are proven. Note, that the optimal strategy is independent from ¢, thus

there is no difference between known or unknown error range.
We still have to ensure that f; = (%)Z is monotone which means that
k k—
the inequality (1—0) (725 )" > (1+06) (525) " should be fulfilled, which
(z)" 1

in turn is equivalent to § < [EE =: Omax(m). Since dmax (M) — -0
e=1

m—1 .
1 ~ 0.4621, we know that the best strategy is given by f; (%)Z if
§ < 0.4621 holds. O

Proposition 3 Assume that an error afflicted robot with error range § in
the standard multiplicative error model is given. Searching for a target lo-
cated on one of m rays using a monotone and periodic strategy is competitive

m

with an optimal factor of 3+ 2(1 + 6)? ((mﬁm - 1) for o < \/e—1.

12



Proof. With the same arguments as in the proof of Theorem 5 the worst

case ratio N .
|7Tonl| 14 2 Z +m f
d Oy, —|— €

will be maximized if we set ¢, := (li—ﬂ)f’“ and 0; := (1+49) f;,i # k for B> 0.
We add 2 ((1 +9) — ﬁ) e —2 ((1 +9) — ﬁ) [ to the sum and achieve

|7ronl| < 1 ) Zk+m lfz
= 1-2(1+ 1490)——— ) +2(1+ 140
: (1+8) (1+0) - ) +20+ pa+ == E
k+m 1
= 3+2(1+6)(1+5)<E f1—1).
Jr
Zk+m71 f
Analogously, the best strategy for the functional Gi(F) := % is

given by f; = (%)Z and the adversary has the chance to maximize

3+ 201+ B)(1+4) (#-1)

which gives 8 = 4.

. .. 1 m k m k—m
Preserving for monotonicity means (E=) (m) > (1+9) (m)
should be fulfilled, which in turn is equivalent to § < %) "1 <e—1

6 Summary

We have analyzed the standard doubling strategy for reaching a door along
a wall in the presence of errors in movements. We showed that the robot is
still able to reach the door if the error J is not greater than % (33 per cent
on a single step). The competitive ratio of the doubling strategy is given by
811_—4'%+1. The error bound is rather big, so it can be expected that real robots
will meet this error. If the maximal error is known in advance the strategy

i
fi = (2 1%‘5> is the optimal competitive strategy with a competitive factor

of 1+8 (H‘S) It was shown that the analysis technique can be applied to
different error models.
In case of m rays the problem is easier to solve since the robot detects
the start point after each return. If the error J is not greater than dyax(m) =
_m _\"_q
%, which is less than % =~ 0.46212 for all m, the standard m-ray

m—1

i
doubling strategy with f; = (%) is the optimal periodic and monotone

strategy and yields a factor 3 + 2 1"'6 (# — 1).
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APPENDIX

A Finding the optimal strategy in Theorem 2

For a fixed 9, 1 and 2(1+9) is constant, and it is sufficient to find a strategy
that minimizes

Zn—i—l

Cod ) = G5 f, — a6 7,

for n>1 (11)

and G(o4)(5) := f_11 where S denotes the strategy f1, f2, f3,.... G, (5) is
the worst case after the first iteration step.

Now, we are searching for a strategy S, in the form f; = o with a fixed
a, possibly depending on §, that asymptotically minimizes

Zn—FI
Gn,&)(Sa) _ n __ n— i
(1-=8ar—20""ta
n+2 a
_ a—1
(1—0)am — 25
_ 012 B a”l—I
C (a=1)(1—0) - 25+ -2
2
«a
< A9a—s=1 Bl

To find a minimum of Hg(a) we derivate and find the roots

20((1=0)a—6—1) —(1—6)a?
(1—8)a—6—1)2
1-0)a?-2(1+0)a
(1-9)2a2-2(1-06)a+(1+9)?
s 1-8a®>-2(1+68)a=0

Hi(a) =

2 (14 6)
& a=0 V = —"
e Q@ T 5
A strategy with a = 0 will not move the robot at all, so a = 2 1+5 is
the only reasonable root. Note, that the denominator of H}(22) ylelds

(1+6)% #0 for 6 > 0. To test whether this a is a maximum or minimum,
we use the second derivative. Since we want to evaluate Hf (o) only for the
roots of the numerator of H}(a), we can use a simplified form5:

6The derivative of a function of type f(z) = ggi; is f'(z) = D(z)-N' E?(I;\;gz) D'(z)
If we want to evaluate f’(x) only for the roots of N(z), the derivative simplifies to

/ _ N'(z)
f |N(z):0($) ~ D(x)

14



2(1—=08)a—2(1+6)
(1+9)2

"
6

(@) =

N(z)=0

This yields % >0 for a =2 %i_g, so we have found a minimum.
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