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Abstract

Searching for a point in the plane is a well-known
search game problem introduced in the early eigth-
ies. The best known search strategy is given by a
spiral and achieves a competitive ratio of 17.289. . . It
was shown by Gal [7] that this strategy is the best
strategy among all monotone and periodic strategies.
Since then it was unknown whether the given strat-
egy is optimal in general. This paper settles this old
open problem and shows that spiral search is indeed
optimal.
Keywords: Search games, motion planning, spiral
search, competitive analysis, lower bound

1 Introduction

Search games (i. e., games where two players, a
searcher and a hider, compete with each other) are
studied in many variations in the last 60 years since
the first work by Koopman in 1946. For example,
Bellman [3] introduced the search for an immobile
hider located on the real line with a known probability
distribution, Gal [7] and independently Baeza-Yates
et al. [2] solve this problem for a uniformly distributed
location of the hider. The book by Gal [7] and the
reissue by Alpern and Gal [1] gives a comprehensive
overview on results on search games.

For analysing the efficiency of a search startegy we
use the competitive framework which was introduced
by Sleator and Tarjan [10], and used in many settings
since then, see for example the survey by Fiat and
Woeginger [6] or, for the field of online robot motion
planning, see the surveys [9, 8].

We consider a special search game problem intro-
duced by Gal [7], namely searching for a point in the
plane. Starting from a fixed origin O we move along a
path Π through the plane. Let us assume that there is
an unknown target point t and let pt denote the first
point on Π so that t lies on the line segment between
O and pt. We detect t at point pt. This means, that
we sweep the plane until finally the unknown target
t is found, see Figure 1. We assume that the target
point is at least one step away from the start.

The efficiency of the search path Π is given by the
worst-case target, C := supt

|Πpt
O |

|Ot| , the constant C is
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Figure 1: Searching for a point in the plane.

called the competitive ratio of Π. It was shown by Gal
[7] that a spiral strategy is the best strategy among
all monotone and periodic strategies. A strategy S
represented by its radius vector X(θ) is called periodic
and monotone, if θ is always increasing and X also
satisfies X(θ+2π) ≥ X(θ). Gal states that it might be
a complicated task to show that there is a periodic and
monotone optimal strategy, a lower bound remains
open.

2 Spiral search

We consider a logarithmic spiral, Π, which is given in
polar coordinates by (ϕ, ·eϕ cot(α)) for −∞ < ϕ < ∞,
see Figure 2 for an example with α ≤ π/2. The angle
α ≤ π/2 expresses the excentricity of the spiral. The
length of the spiral from the center O to some point
q is given by 1

cos α |Oq|, for details see [4].
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Figure 2: A logarithmic spiral and the worst-case sit-
uation.

The spiral expands successively and for every target
point t there will be a first point pt on the spiral so
that the segment ptO will hit the target t for the first
time. Obviously, the worst case for the competitive
ratio is given, if we miss the target t arbitrary close to
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(ϕ, eϕ cot α) and detect t at pt = (ϕ+2π, e(ϕ+2π) cot α),
see Figure 2. Altogether, the worst-case ratio for the
spiral is given by

|Πpt

O |
|Ot| =

1
cosα

e2π cot α .

Optimization on α gives a competitive ratio of
17.289 . . . for cotα = 0.15540 . . . This strategy is the
best strategy among all periodic and monotone strate-
gies, see Alpern and Gal [1].

Theorem 1 The optimal spiral for searching a point
in the plane achieves a competitive ratio of 17.289 . . .

3 Lower bound construction

The maximal lower bound known so far is 17.079 . . .
and was presented in [5] in the context of searching
for rays in the plane. The lower bound construction
here consists of the following steps.

1. We consider a discrete version of the problem us-
ing a bundle of m rays that emanate from the
origin, this was also used in [5].

2. We simplify the problem for m rays in some steps
which results in a ratio not greater than the con-
tinous version of the problem.

3. We show that the optimal solution of the simpli-
fied problem has to be monotone and periodic for
every m.

4. For every m we compute the optimal strategy us-
ing the framework of Gal. The optimal competi-
tive ratio goes to 17.289. . . if m goes to infinity.

Let us first consider a discrete version of the prob-
lem using a bundle of m rays that emanate from the
origin and which are separated by an angle α = 2π

m ,
see Figure 3. The target will be on one of the rays.
Again, the goal is detected, if it is swept by the radius
vector of the trajectory, i.e., t is hit by a segment ptO
and pt is visited on the corresponding ray. Note that
if m goes to infinity we are back to the continous ver-
sion of the problem. But we can neither assume that
we have to visit the rays in a periodic order nor that
the depth of the visits increases in every step.

We represent a search strategy, S, as follows: In the
ith step, the searcher hits a ray—say ray l—at dis-
tance xi from the origin, moves a distance βixi − xi

along the ray l, and leaves the ray at distance βixi

with βi ≥ 1. Then, it moves to the next ray within dis-
tance

√
(βixi)2 − 2βixixi+1 cos γi,i+1 + x2

i+1, see Fig-
ure 3. Note that any search strategy for our problem
can be described in this way. Let us assume that the
ray l was visited up to distance βkxk and is visited
the next time at index Jk. The worst case occurs if
the searcher slightly misses the goal while visiting ray
l up to distance βkxk. Instead, it finds the goal at

γi,i+1

xi+2

xi+1

xi

βixi

α = 2π
m

βi+2xi+2

βi+1xi+1

βi+1xi+1

Figure 3: A bundle of rays, a reasonable strategy and
a shortcut.

step xJk on ray l arbitrarily close to βkxk. Either we
have xJk > βkxk; that is, the searcher discovers the
goal in distance xJk on ray l, or we have xJk < βkxk.
In the latter case, the searcher moves βkxk−xJk from
xJk and finds the goal by accident. Altogether, the
competitive ratio, C(S), is greater than

Jk−1∑
i=1

βixi − xi +
√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1

βkxk
.

(1)
We simplify the problem for m rays in some steps.

We do not change the movement of the strategy but
we will improve the ratio. Instead of the distance
√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1+βi+1xi+1−xi+1

from βixi to xi+1 and then to βi+1xi+1 between two
arbitrary successive rays we let this distance shrink to√

(βixi)2 − 2βixiβi+1xi+1 cos 2π
m + (βi+1xi+1)2. This

would be the distance between two neighboring rays
without slipping along the second ray, see the dashed
line in Figure 3. The new distance is obviously not
greater than the original one, of course it might be the
same for βi+1 = 1 and two neighboring rays, which
means γi,i+1 = 2π

m . We change only the path length
for the ratio but we do not change the movements of
the given strategy. Therefore, the ratio (1) cannot
increase, because the numerator will not increase.

There is only one problem in this reformulation con-
cerning the last value of the sum in the numerator of
ratio (1). The last step of the strategy (before de-
tecting the goal at βkxk) goes from βJk−1xJk−1 to
xJk and not directly to βJkxJk and this step might
indeed be smaller than the distance from βJk−1xJk−1

to βJkxJk . Therefore, we allow—only for the com-
putation of the ratio—that the last value in the nu-
merator of (1) is given by the distance of the shortest
path from βJk−1xJk−1 to a neighboring ray, which
is βJk−1xJk−1 sin 2π

m . One can imagine that this last
step will have no influence if we let m go to infinity
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at the end. Again, we do not change the movement
of the strategy, we only improve the ratio.

For convenience, from now on we denote βixi by yi.
Altogether, we would like to minimize

yJk−1 sin 2π
m +

Jk−2∑
i=1

√
y2

i − 2yiyi+1 cos 2π
m + y2

i+1

yk
.

(2)
Obviously, the ratio (2) is never greater than ratio

(1), only the numerator might be smaller.
The simplification above results in the following

much more simple interpretation of the problem. We
can assume that there are only two rays with angle
2π
m between them and the agent moves successively
from one to the other, see an example (bold line) in
Figure 4 for m = 5 up to 11 steps. For every visit the
agent only decides which ray, l, of the original m rays
it would visit in the m-ray setting. Note that this also
means that the important indices Jk are fixed in that
way. Remember that the ray visited with depth xk is
still visited the next time at index Jk.

y0 = 1

y3
y5

y1

y8

y9
y4

y3 y5 y8
y4

y11

y11 y7 y10

y10
y6

y7

y2

y1 y2 y9
y6

y0 = 1

Figure 4: The problem for m = 5 rays interpreted by
successive visits on two rays. The Strategy S (bold
line) can be replaced by the sequence S ′ (dashed line).

Let us now assume that we have an optimal strat-
egy S = (y1, y2, y3, y4, . . .) and given values Jk for this
problem. The worst-case ratio of S is the worst-case
ratio of (2). The target is at least one step away from
the origin. The starting depth on every ray is 1. At
every step yi the rays are visited up to a certain depth.
For the optimal sequence S we can now choose a vis-
iting order (i.e., we improve the indices Jk) in such
a way that at every step yi the ray with the small-
est current depth is visited next. Obviously, this will
keep the ratio (2) as small as possible regardless how
the original visiting order was. If a ray with smallest
current depth is visited later, some more steps were
made and the ratio (2) will increase. Note that we do
not change the movements of the strategy.

For example, in Figure 4 in the optimal visiting or-
der the first five steps y1, . . . , y5 visits the five imagi-
nary rays successively since the starting depth on ev-
ery ray was 1. For distance y6 we set J3 = 6 since y3

is the smallest current depth on all rays. This means
that y6 visits the same ray as y3. Further on we obtain
J5 = 7 since y5 is the smallest current depth at step
y7, then we have J1 = 8, J8 = 9, J2 = 10, J9 = 11
and so on. This is the best visiting order for S.

If two rays have exactly the same current depth, we
choose the one which was visited earlier. Note that
we do not change the movements of the strategy and
it might still happen that yi+1 is smaller than yi. But
we know that at step yi+1 there is at least one ray that
has current depth smaller than yi+1, otherwise with
distance yi+1 we would not detect more goals and step
yi+1 was needless, we can skip such a step. Of course,
after a step with yi+1 < yi the value yi+1 might be the
smallest current depth on all rays. Then its ray should
be visited again in the next step yi+2. We simply allow
to visit the same ray in two successive steps which
is not possible in the original m-ray version. This
additional freedom can only improve the ratio (2).

Since Jk is the index where the ray of yk is visited
next, for Jl < Jj we now have yl ≤ yj. The next
idea is that we really visit the two rays in an increas-
ing order. In the example of Figure 4 the strategy
S = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 . . .) gives
J3 = 6, J5 = 7, J1 = 8, J8 = 9, J2 = 10, J9 = 11 and
so on. Note that the first 5 = m elements of S visit
the 5 rays successively. Thus, the sequence S now will
be reordered to S′ = (y′1, y′2, y′3, y′4 . . .) with y′1 = y3,
y′2 = y5, y′3 = y1, y′4 = y8, y′5 = y2 y′6 = y9, y′7 = y4,
y′8 = y11, y′9 = y7 and so on.

For S′ we can again use a visiting order induced
by the smallest current depth, this can not increase
the ratio for S′ as mentioned before. This means that
the rays are now visited in successive order and with
increasing distance. For index n in S ′, the index J ′

n

is exactly n + m. Thus, S ′ is monotone and periodic
and the ratio is given by

y′n+m−1 sin 2π
m +

n+m−2∑
i=1

√
y′i

2 − 2y′iyi+1 cos 2π
m + y′i+1

2

y′n
.

(3)
We still have to show that S ′ is not worse than S

with respect to the competitive ratio. The worst case
for depth yk on S is attained for the next visit at index
Jk. In S′ the distance yk might be visited in an earlier
step than in S, that is y′n = yk and n ≤ k. For index
n in S′, the index J ′

n equals exactly n + m as already
seen. We would like to compare the ratios for yk in
S and y′n = yk in S′. It is easy to see that for the
sequence S also Jk = n + m has to be fulfilled, since
the visit order in S was induced by current smallest
depth. For example, in the sequence S ′ in Figure 4,
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the ray of y′2 = y5 was visited at index 7 again and in
the sequence S the ray of y5 was also visited again at
index 7. Thus, for comparing the ratios for y′2 = y5

we have to use the sums in the ratios of S and S ′ up
to the same index 7 but with some different elements.

This holds in general. We consider the sequence S.
Since in the beginning the m rays were visited suc-
cessively by the depths y1, . . . , ym one of the rays is
visited with depth ym+1 in the next step and ym+1 is
one of the new current depths of the rays. Generally
at every step yk, the element yk will be used on one of
the rays and therefore one current depth is exchanged
by yk. In the sorted order of y1, . . . , yk−1 the k −m
greatest element will be exchanged, which is element
y′k−m. Moreover, up to index k the sequences S and
S′ will have at most m− 1 different entries and these
entries are greater in S than in S ′.

Altogether, this means that the number of visits for
the worst case at yk or y′n = yk is the same (namely
Jk = n + m = J ′

n) and only at most m − 1 elements
in S are greater than that of S ′ up to index n + m.

We consider a simple shortest path problem. Let a
sequence of elements S = (y0, y1, y2, y3, . . . , yn+m) be
given. We use images of the corresponding points on
both rays as already depicted in Figure 4. The task is,
to compute a shortest path that starts at the small-
est element yj in S and visits exactly one of the two
images for every element yi but changes sucessively
from one ray to the other.

We would like to show that the shortest path has
to visit the rays in an increasing order, see the dashed
path in Figure 4. This can be shown by induction on
the length of S. For two elements in S this is trivial.
So we consider a sequence S with n + 1 elements and
assume that the statement holds for all sequences with
less than n elements. By triangle inequality we can
show that the shortest path always starts with the
segment of smallest slope. Now we delete the smallest
element yj out of S and the corresponding shortest
path visits the remaining elements in increasing order
starting at the second smallest value yi. The image
of yj is closer to yi than to any other part of the
shortest path for S \ {yj}, therefore we can combine
the segment yjyi with the shortest path starting at
yi. We obtain an overall shortest path that visits the
images in increasing order.

Unfortunately, S and S′ might have m−1 different
elements. All these elements in S are greater than
the corresponding elements in S ′. The correspond-
ing shortest path problem for S will result in a path
of smaller length, if we move a couple of points with
greatest distance closer to the origin. Therefore, we
substitute the differing elements of S by the corre-
sponding elements of S′.

Altogether, we conclude that yn+m−1 sin 2π
m +

∑n+m−2
i=1

√
y2

i − 2yiyi+1 cos 2π
m + y2

i+1 is greater than

or equal to

y′n+m−1 sin
2π

m
+

n+m−2∑

i=1

√
y′i

2 − 2y′iyi+1 cos
2π

m
+ y′i+1

2

and the sequence S′ is optimal because for every y′n =
yk the ratio (3) is not greater than the ratio (2).

In principle, we are already done, because as m goes
to infinity we get arbitrarily close to the searching-
for-a-point-in-the-plane problem and there is always
an optimal solution that is periodic and monotone.
Thus, together with the previous result of Gal, spiral
search is optimal.

But we can also proceed more directly as follows:
We compute an optimal sequence S ′ for ratio (3).
Fortunately, S′ is periodic and monotone and fulfills
some other nice properties (for example unimodal-
ity) so that a general framework of Gal is applica-
ble, see [7, 1]. This means that (3) is minimized
by an exponential sequence y′i = ai. Simple arith-
metic shows that the ratio is given by f(a, m) =
am−1 sin 2π

m + am−1

a−1

√
1− 2a cos 2π

m + a2. Thus, we
can analytically find the value amin that minimizes
f(a, m). For increasing m the corresponding value
f(amin, m) converges to 17.289... For example, for
m = 5000 we compute amin = 1.000195303 . . . and
f(amin, 5000) = 17.289 . . .

Theorem 2 Spiral search is optimal.
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